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Abstract 
Steadily, cancer is becoming the first cause of mortality, with over 9 million deaths estimated in 2018. Increasing evidence supports a direct 
association between obesity, type 2 diabetes mellitus (T2DM) and cancer, with a higher risk of cancer mortality especially for some of the most 
common malignancies, such as breast, colon, and rectal cancers. So far, several mechanisms underlying the cancer–diabetes relationship 
have been investigated revealing dysregulations of the insulin–insulin-like growth factor (IGF) system as the most important paradigm. Other 
molecular mechanisms that seem to play a role in the association cancer–T2DM consist of alteration of the signaling pathways activated 
by inflammatory cytokines, adipocytokines or adhesion molecules. The overall aim of this review is to provide an overview of the molecular 
mechanisms linking obesity, T2DM and cancer, as related to the receptors and signaling pathways involved in these associations. 
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 Introduction 

Cancer is overtaking cardiovascular disease as the first 
leading cause of death worldwide, according to the latest 
data published by the World Health Organization (WHO) 
and the International Agency for Research on Cancer 
(IARC), with an estimated 9.6 million cancer deaths  
in 2018, making cancer the most important barrier to 
increasing life expectancy in the 21st century [1, 2]. 
Furthermore, IARC estimates there will be 18.1 million 
new cancer cases in 2018, with the highest incidence in 
Asia (48.4%), followed by Europe accounting for 23.4% 
of these new cases, Americas (21%) and Africa (5.8%) 
[1]. Regarding mortality, the highest percentage of cancer 
deaths in 2018 was also observed in Asia (57.3%), this 
share being higher than the cancer incidence share. The 
same pattern was observed for Africa, where 7.3% of 
cancer deaths were reported. The mortality shares reported 
by this study for Europe and Americas were 20.3% and 
14.4%, respectively [1]. The type of cancer with the 
highest mortality reported for 2018 was lung cancer, 
responsible for 18.4% of all cancer deaths, followed by 
colorectal cancer, accounting for 9.2% of all cancer deaths. 
Other forms of cancer with increased mortality were 
stomach and liver cancers, each responsible for 8.2% of 
all cancer deaths. The second highest incidence (11.6% 
of all cancer cases) was reported for female breast cancer, 
which was accountable for 6.6% of all cancer deaths [1]. 

It has been long known that 30–50% of all cancers 
can be prevented, by avoiding pollution, occupational 
carcinogens and some viral or bacterial infections [2]. 

Nevertheless, both obesity and type 2 diabetes mellitus 
(T2DM) are increasingly recognized to be associated 
with higher cancer mortality. For instance, it is clearly 
demonstrated that T2DM is an aggravating factor for 
cancer mortality in patients suffering from colon cancer 
or pancreatic cancer, as well as breast cancer in females 
and liver cancer or bladder cancer in males [3, 4]. 

As such, the involvement of obesity and T2DM in 
the pathogenesis of different types of cancer is generally 
accepted. While this relationship is known for more than 
80 years [3], the exact mechanisms linking these conditions 
remain largely unknown or underinvestigated. In this paper, 
we review the molecular mechanism linking obesity, 
T2DM and cancer, with focus on the signaling pathways 
activated by plasma-membrane receptors. 

 Obesity and diabetes.  
Metabolic syndrome 

Worldwide, an estimated 650 million adults suffered 
from obesity in 2016 (numbers which have nearly tripled 
since 1975), with an overall prevalence of obesity of about 
13% (11% in males and 15% in females); even more 
worrisome is data showing that over 340 million children 
and adolescents in 2016 were overweight or obese [5]. 
Studies analyzing the trends in obesity estimate that the 
prevalence of obesity will reach 18% in males and 21% 
in females by 2025 [6]. 

The epidemic of T2DM parallels the epidemic seen 
in obesity. Indeed, in most, though not all, individuals 
with obesity there is a condition known as the metabolic 
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syndrome (MetS) found in the continuum between simple 
obesity and T2DM and often considered a “pre-diabetes” 
entity [7]. Different manifestations of MetS have different 
diagnostic criteria, but most include an increased waist 
circumference, dyslipidemia, hypertension and even 
elevated fasting plasma glucose. Although MetS and 
T2DM are associated with older age, family history of 
diabetes, history of gestational diabetes, physical inactivity 
and race/ethnicity, the most critical risk factors in 
developing T2DM are obesity or MetS. 

According to data published by the International 
Diabetes Federation (IDF), in 2017, there were 425 
million people living with diabetes in the world, number 
that is estimated to increase by 45%, reaching 629 million 
cases by 2045 [8]. The estimates for Europe show that in 
2017 there were 58 million people living with diabetes 
with an estimated increase to 67 million by 2045 [8]. 

The epidemiology of MetS is more difficult to establish, 
given the different criteria used for its definition. It is 
estimated that the worldwide prevalence of MetS varies 
from 10% to 84% depending on the population studied and 
the definition used in the study. Epidemiological studies 
performed in Europe showed that about one-fourth of 
the adult population has MetS [9], while the prevalence 
reported in the United States was 38.5% [10]. 

Genome-wide association studies (GWASs) have 
identified genetic variants associated with an increased 
risk of developing T2DM. Some of these genetic variants 
have also been studied in relation to the risk of different 
cancers, such as pancreas, colon, rectum, prostate and breast 
cancers [11–15]. Furthermore, genetic studies have also 
shown a connection between obesity and breast cancer 
and colon cancer, potential overlaps being proposed with 
chromosomes 18q for colon cancer and 11p and 16q for 
breast cancer, when obesity gene maps are superimposed 
with cancer gene maps [16, 17]. Recent studies have 
demonstrated a great potential for micro-ribonucleic acids 
(miRNAs) as cancer biomarkers and therapeutic targets 
in different types of cancer [18]. Furthermore, studies 
showed that miRNAs may have an altered expression  
in cancers associated with obesity and MetS [19, 20]. 
miRNAs, such as let-7, miR-27, and miR-143 have an 
altered expression both in cancer and obesity and may 
play a role in obesity-linked breast cancer [19]. 

 Diabetes and cancer 

Studies show that there is a direct association between 
T2DM and cancer, independent of the effects of obesity. 
In a retrospective population-based cohort study of 
32 247 patients with T2DM, Gini et al. showed a 30% 
increased overall risk of cancer in patients with T2DM, 
both for males and females, and the strongest association 
between T2DM and cancer was with pancreatic cancer. 
In this study, T2DM was also highly associated with liver, 
endometrium, colorectal, bladder, female breast, kidney 
and urinary tract cancers [21]. 

A recent study conducted using UK Clinical Practice 
Research Datalink (1988–2012) showed that patients with 
T2DM had higher incident rates for liver, pancreatic and 
colon cancers, compared to subjects without diabetes [22]. 
However, the same study did not find different incident 
rates regarding rectal, gastric and biliary cancers between 
patients with T2DM and subjects without diabetes. 

The association T2DM–breast cancer is highly studied. 
For instance, breast cancer risk is significantly increased 
in women with prediabetes [23, 24], raising awareness 
regarding prevention of both T2DM and breast cancer 
from the diagnosis of prediabetes. As single entity, diabetes 
was found to be accountable for 293 300 cancer cases, 
as 25.8% of diabetes-related cancers were attributable  
to the increases in diabetes prevalence since 1980 [25]. 
Pearson-Stuttard et al. estimated population attributable 
fractions for 12 types of incident cancers attributed to 
obesity and diabetes for 175 countries by gender and 
age, showing that the combined effects of the two risk 
factors were responsible for 5.7% of all incident cancers, 
in 2012 [25]. 

Given the increasing prevalence of T2DM, as well as 
the parallel increase in diabetes-related cancers, higher 
emphasis should be placed on preventing T2DM in order 
to decrease both diabetes and cancer burden. 

 Obesity and cancer 

Epidemiological large-cohort studied established that 
high body mass index (BMI) was responsible for 544 300 
incident cancer cases worldwide, in 2012; furthermore, 
the increase in obesity prevalence since 1980 was attributed 
31.9% of all obesity-related cancers [25]. 

Based on experimental, epidemiological and clinical 
data, IARC has concluded that excessive body weight is 
associated with at least 16 types of cancer: adenocarcinoma 
of esophagus, pancreas, liver, colorectum, mouth, pharynx, 
larynx, cardia, gallbladder, prostate, postmenopause breast 
cancer, endometrium, kidney, ovary, cervix [26], placing 
obesity after smoking as the second leading cause of 
malignancy [27, 28]. There are conflicting data regarding 
the relationship between obesity and lung cancer, studies 
suggesting that smoking behavior may play a role as 
mediator in this association [29, 30]. Paradoxically, there 
is an inverse association between lung cancer mortality 
and obesity [31]. 

If the current trends will continue, excessive adiposity 
may overtake smoking as the main cancer risk factor in 
the next years [2]. 

 Mechanisms incriminated in the 
association obesity, T2DM and  
cancer 

Hyperglycemia 

Hyperglycemia was proposed as a risk factor for cancer 
development, taking into account that cancer cells take 
up glucose and use it for both energy production and 
different synthesis. A meta-analysis conducted by de Beer 
et al. showed that chronic hyperglycemia, evaluated by 
hemoglobin A1c (glycated hemoglobin) (HbA1c) levels, 
was correlated with an increased risk of breast, pancreatic, 
gastric and liver cancer, and did not correlate with prostate 
cancer risk [32]. Furthermore, hyperglycemia was associated 
with chemotherapy resistance and reduced overall survival 
(OS) in breast cancer [33, 34]. Several glucose-associated 
pathways were described in the association hyperglycemia–
cancer: autoxidation, oxidative phosphorylation, glycosy-
lation, and glycosamine pathways, inducing free peroxides 
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radicals formation required for increased cell division [35]. 
Interestingly, cancer cells present an altered glucose meta-
bolism, relying mostly on anaerobic glycolysis, known 
as the Warburg effect [36, 37], which in turn leads to a 
glucose uptake increase in cancer cells [36]. 

However, studies have shown that hyperglycemia in 
the absence of hyperinsulinemia is not associated with 
tumor growth [36], proving that increased levels of insulin 
and insulin-like growth factor (IGF) as it happens in insulin 
resistant states, such as obesity, MetS and T2DM create 
a favorable tumor microenvironment in the cells, which 
will become more susceptible to cancer development 
[35, 36]. 

Molecular mechanism 

Dysregulations of the insulin–IGF system 

Insulin and IGFs signaling contribute to metabolic 
signaling pathways, but also play important roles in cell 
survival and proliferation. Insulin, together with IGF-I 
and IGF-II, are ligands of the insulin–IGF (IIGF) system, 
which includes three cell surface receptor tyrosine kinases 
(RTKs): insulin receptor (IR), IGF-IR and IGF-IIR [38–41], 
as well as at least seven IGF-binding proteins (IGFBPs). 
The IR and IGF-IR are well-studied transmembrane RTKs, 
and their downstream cellular signal pathways are well 
known, while the IGF-IIR has no tyrosine kinase enzymatic 
activity and is the mannose-6-phosphate receptor [36]. 

Both the IR and IGF-IR are expressed on the cell 
surface as two αβ chains dimmers, with each monomer 
containing seven extracellular domains, joined by disulfide 
bridges forming a heterotetrameric complex [41–43]. These 
RTKs have a high homology of their amino acid sequences, 
with a 45–69% homology in the ligand-binding site  
and a 60–80% homology in the substrate recruitment 
and tyrosine kinase domains [41, 44–47]. However, the 
expression of these receptors is tissue specific, IR being 
found in higher levels in liver and adipose tissue, whereas 
although IGF-IR has an ubiquitous expression, it is found 
at low levels in adipose tissue and is almost absent in the 
liver. These differences, together with structural differences 
found in the β-subunit, resulting in specific activation of 
substrates and signaling pathways, may explain in some 
measure the preferential effects of insulin on metabolic 
homeostasis [42]. 

In unphosphorylated state, the IGF-IR catalytic activity 
is very low as a result of the inhibitory conformation of 
the activation loop, which is a domain of the kinase region 
that impedes tyrosine phosphorylation and adenosine 
triphosphate (ATP)-binding, acting as a pseudosubstrate 
which arrests the active site [41]. Classically, the binding 
of the ligand (IGFs) leads to a conformational change and 
activation of the IGF-IR, the dimeric subunit partner trans-
phosphorylating the tyrosines of the activation loop [40]. 
The activation of the IGF-IR leads to two main down-
stream signaling pathways, mitogen-activated protein kinase 
(MAPK) and phosphoinositide 3-kinase (PI3K). 

The α subunits of the IR present two binding sites for 
the ligands, one with low affinity and a second one with 
high affinity. Insulin binds to the low-affinity site of one 
α subunit and then to the high affinity site of the other  
α subunit, while a second insulin molecule binds to both 

sites of β subunit, leading to the dissociation of the first 
insulin molecule [44]. These trigger the tyrosine kinase 
activity of β subunits, leading to a cascade of phosphorylation 
of intracellular proteins participating in cell growth and 
survival, as well as cell metabolism [44, 48]. 

The IR is encoded by a gene located in chromosome 
19p13.2, the coding region including 22 exons [44, 49]. 
Two structurally different IR isoforms are generated by 
alternative splicing of exon 11, IR-A and IR-B, which differ 
by the length of the alpha-C-terminal (αCT) segment, the 
latter including 12 amino acids derived from exon 11, 
being the mature isoform, whereas the former, which 
does not include these amino acids, is the fetal isoform 
[43, 44]. Furthermore, the IR isoforms have a different 
tissue expression, with IR-A being mainly expressed  
by embryo and fetal tissues, hematopoietic cells, central 
nervous system as well as cancer cells, and IR-B being 
predominantly expressed in the liver, adipose tissue and 
muscle (insulin target tissues) [43, 44, 49, 50]. Furthermore, 
IR-B is also expressed in differentiated cells, such as 
mammary gland cells, epithelial intestinal cells, kidney 
cells, thyroid cells, liver cells, adipocytes, while IR-A is 
mainly expressed in the precursor cells of all these cell 
types [44], suggesting that IR-A is involved in regulating 
tissue development and prenatal growth, studies showing 
that only IR-A binds with high affinity growth factors, 
such as proinsulin and IGF-II, whereas IR-B plays an 
important role in adults in glycemic metabolism [43, 44]. 

Recent studies support the theory that the physiological 
roles of the IR isoforms are not regulated by their different 
affinities for insulin, but by their different affinities for IGFs, 
mostly for IGF-II [43, 49]. Furthermore, the diversification 
of the IIGF system actions and signaling in various tissues 
could be explained both by differential expression of the IR 
isoforms, as well as by the association IR–IGF-IR in order 
to form hybrid receptors (HRs) [43, 51]. The proportion of 
HRs found in a tissue is given by the amount of IR isoforms 
and IGF-IR expressed by each cell [52]. Regarding their 
roles, HRs can act as growth-promoting receptors with 
poor insulin activation, but HRs containing IR-A may also 
respond to hyperinsulinemia [52]. 

With regard to the IR signaling pathways, the activation 
of the IR leads to both metabolic and mitogenic effects. 
The activated IR is involved in glucose, lipid and protein 
metabolism by the PI3K/v-akt murine thymoma viral 
oncogene homolog (protein kinase B) (AKT) pathway. 
This pathway is regulated by the phosphatase and tensin 
homolog deleted on chromosome 10 (PTEN), which 
dephosphorylates phosphatidylinositol-3,4,5-trisphosphate, 
molecule that is responsible for 3-phosphoinositide-
dependent protein kinase 1 and AKT activation [52]. The 
mitogenic pathway stimulated by the activated IR is rat 
sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-
activated protein kinase kinase/extracellular-regulated 
kinase (RAS/RAF/MEK/ERK) cascade, having as a final 
effect the phosphorylation of cytosolic proteins, which will 
translocate to the nucleus, regulating gene expression and 
cell growth [52]. Although these signaling pathways are 
used by all the receptors of the IIGF system, there are some 
differences depending on both the receptor and ligand 
involved [52]. Therefore, we can explain the different 
effects of insulin when it binds to the two isoforms of the 
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IR, as well as the different effects given by the activation 
of IR-A by either insulin or IGF-II [52]. 

It is generally accepted that hyperinsulinemia and 
insulin-resistant states, such as obesity and T2DM, are 
associated with different forms of cancer, such as carci-
nomas of the gastrointestinal tract, liver, pancreas, kidney, 
breast, endometrium cancer [3, 53–55], an important role 
in these associations being played by the IR-B/IR-A ratio 
and HRs. Furthermore, higher levels of insulin/C peptide 
lead to a reduced apoptosis and an increased cell prolife-
ration, having a promoting effect on malignancies [3, 54]. 
Additionally, mitogenic properties of insulin, particularly 
in the liver and the pancreas that are exposed to high 
quantities of endogenous insulin, were demonstrated [3, 
56–58], leading to the hypothesis that hyperinsulinemia 
may have a stimulating effect on cancer growth and their 
progression to metastatic disease. 

Over the years, many studies showed that the IR is 
overexpressed in many forms of cancer (breast, prostate, 
endometrium, ovarian, liver, bladder, lung, colon, thyroid, 

osteosarcoma), breast cancer being one of the most studied, 
where the content of IR is six-fold higher than in the 
normal breast tissue [44]. Studies performed in the last 
years confirmed that this overexpression associated with 
hyperinsulinemia is responsible for the high incidence of 
breast cancer among women with obesity or T2DM [44]. 

The role of IGF-IR in promoting and sustaining the 
malignant phenotype is also generally accepted and over-
expression of IGF-IR in gastric, colorectal, breast and 
endometrial cancers, which was correlated with cancer 
development, aggressiveness, poor outcome and resistance 
to therapy is clearly demonstrated [59]. Yet, the recognition 
of the role of IGF-IR in the association cancer–diabetes 
is still in its infancy as only recently it was concluded that 
IGF-IR had a higher expression in the patients having 
breast cancer and T2DM compared to those without diabetes 
[60], while for other cancer types this association is still 
under investigation. Figure 1 summarizes the role played 
by IIGF system together with other important molecular 
mechanism in the association T2DM and cancer. 

 
Figure 1 – The main molecular mechanism involved in the association T2DM–cancer. ERK/AKT: Extracellular-
regulated kinase/v-akt murine thymoma viral oncogene homolog (protein kinase B); IGF-I: Insulin-like growth factor-I; 
IGF-II: Insulin-like growth factor-II; IGF-IR: Insulin-like growth factor-I receptor; IR-A: Insulin receptor A; MAPK: 
Mitogen-activated protein kinase; T2DM: Type 2 diabetes mellitus. 

G protein-coupled receptors 

G protein-coupled receptors (GPCRs) are one of the 
most studied groups of cell signaling receptors, with more 
than 800 being reported in humans [61]. According to 
their structure, different authors classified them either into 
five families (rhodopsin, adhesion, secretin, glutamate, 
frizzled) [62] or into four classes (A, B, C, F) [63], class 
A (rhodopsin family) being the most widely characte-
rized. 

Representatives of class A and B receptors are proposed 
active targets for diseases, such as diabetes, cardiovascular 
diseases, neurological disorders and cancers [14, 64]. 

Fatty acid receptor family GPCRs, belonging to class 
A GPCRs, were studied for their possible roles in the 
relationship cancer–T2DM. The most studied free fatty 
acid receptors (FFARs) are FFAR1, FFAR2, FFAR3 and 
FFAR4, FFAR1 and FFAR4 being activated by medium- 

to long-chain fatty acids, while FFAR2 and FFAR3 are 
activated by short-chain fatty acids [64]. 

Both FFAR1 and FFAR4 play an important role in 
glucose metabolism, FFAR1 being expressed by β-cells, 
enhancing glucose-induced insulin secretion and cell 
glucose uptake, while FFAR4 are implicated in insulin 
signaling at the level of adipocytes, taste buds and 
macrophages [64], their dysregulation being associated 
with T2DM in animal studies. 

Interestingly, studies show that FFAR1 and FFAR4 
have opposing effects in terms of tumorigenesis and 
migration, the loss of FFAR1 in pancreas cancer cells 
and melanoma cells stimulating migration, while FFAR4 
loss inhibiting this process [65, 66]. 

Other cell culture models showed that activation of both 
FFAR1 and FFAR4 exhibited inhibitory effects on prolifera-
tion and migration in prostate cancer and breast cancer [64]. 
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Furthermore, colorectal cancer tissue FFAR4 expression 
was correlated with advanced clinical stage and poor 
differentiation, FFAR activation in these cells being 
associated with increased migration and angiogenesis [67]. 
Additionally, recent studies showed that FFAR4 activation 
may play a role in chemotherapy resistance [64]. 

Beta-arrestin 

Beta-arrestin 2 (β-arr2) is an important cell regulator, 
with a crucial role in signaling downstream of GPCRs 
[68–70]. Recent studies showed that the pathways mediated 
by β-arr2 are involved in pathological processes, such as 
tumorigenesis and T2DM. 

Jing et al. showed overexpression of β-arr2 in adriamycin 
(ADM) multidrug-resistant breast cancer cell, as well as 
partly restored sensitivity to cancer drugs after β-arr2 
silencing, suggesting β-arr2 as a new molecular target for 
drug-resistant breast carcinoma [70]. 

Furthermore, β-arrestin system plays a role in IGF-IR 
signaling, studies showing that β-arr1 binding to IGF-IR 
has as a final effect additional MAPK/ERK signaling and 
protects cancer cells against anti-IGF-IR therapies [69]. 

Pang et al. showed in mice studies that β-arr2 was able to 
improve glucose uptake and insulin sensitivity in diabetes [68]. 

PTEN 

Discovered in 1997, PTEN is a tumor suppressor whose 
expression is frequently lost in tumors [71]. Gremline 
mutations in PTEN gene are known to cause cancer-
predisposition syndromes [72]. 

PTEN genetic inactivation was seen in melanomas, 
glioblastomas, endometrium, prostate, bladder and colon 
cancers, while in lung and breast cancer a reduced PTEN 
expression was observed [72, 73]. 

PTEN is a protein tyrosine phosphatase, which is 
capable to dephosphorylate inositol lipids, as well as 
proteins [74]. PTEN acts as a tumor suppressor trough 
its ability to negatively regulate AKT, an oncogenic protein 
involved in tumor cell growth, survival, migration and 
differentiation [75]. 

With regard to insulin resistance and T2DM, animal 
studies showed that PTEN inhibition might be appropriate 
in T2DM, this protein being able to counteract insulin 
signaling [74]. Selective PTEN-knockout mice in muscle 
cells, pancreatic cells or adipocytes were protected for 
insulin resistance and T2DM, in the absence of cancer 
[74]. Furthermore, diminished total PTEN levels reversed 
hyperglycemia and insulin resistance in diabetic mice [74]. 

Interestingly, PTEN seems to play a role in the deve-
lopment of chronic complications of diabetes. Diabetes is 
one of the leading causes of chronic kidney disease, which 
is rapidly becoming public a health burden and recent 
studies associate PTEN dysregulations with renal fibrosis 
in diabetic nephropathy [76–78]. 

Fetuin-A 

Discovered almost 75 years ago, fetuin-A is a glyco-
protein synthesized by the liver. Fetuin-A is a multi-
functional protein, with proven roles in normal and 
pathological processes, such as insulin resistance, bone 
metabolism, vascular calcification, etc. Recent in vivo 
studies have shown that fetuin-A also plays a role in tumor 
cell growth and progression [79, 80]. Furthermore, it 
was demonstrated that pancreatic, glioblastoma, prostate 

tumor cells are able to secrete an ectopic fetuin-A, with 
roles in tumor progression [80]. 

Srinivas et al. demonstrated that fetuin-A is an 
inhibitor of the IR tyrosine kinase, inhibiting by 40% the 
insulin-induced phosphorylation of the β-subunit of the 
IR [81], resulting in a decreased glucose transport, which 
might be a source of insulin resistance [80]. Several recent 
meta-analysis showed an association between higher 
circulating fetuin-A levels and increased risk of T2DM 
[82–84]. Mechanistically, direct cancer-promoting roles for 
fetuin-A, were demonstrated, such as enhanced exosomes 
production that in turn promotes cell spreading and 
adhesion [55]. It should be noted here that levels of serum 
autoantibodies against fetuin-A are proven as useful 
biomarker for early-stage detection of breast cancer [85]. 

Chronic inflammation 

Obesity and T2DM are associated with chronic 
inflammation [86, 87], being characterized by increased 
production of pro-inflammatory cytokines [interleukin 
(IL)-6, tumor necrosis factor (TNF), IL-1]. Circulating 
C-reactive protein (CRP), a marker of inflammation, was 
studied in relationship with different types of cancer. 
Zhou et al. concluded that pre-diagnosis levels of CRP, 
but not IL-6 levels, are associated with an increased risk 
of colorectal cancer [88]. 

Animal studies showed that in obesity white adipose 
tissue presents an increased proportion of proinflammatory 
M1 macrophages, which leads to increased production of 
inflammatory cytokines and decreased adiponectin levels 
having as a result further adipose tissue dysfunction by 
increased release of free fatty acids (FFAs) [89]. The 
high levels of FFAs determine reactive oxygen species-
induced deoxyribonucleic acid (DNA) damage, as well as 
upregulation of p53 tumor suppressor [89, 90], further 
promoting inflammation and insulin resistance, which is 
believed to create an appropriate microenvironment for 
tumor cell growth and progression [89]. 

Abnormal adipocytokine production 

Abnormal adipocytokine production is numbered 
among the different hypotheses proposed to explain the 
association between adiposity, T2DM and cancer, as 
shown in Figure 2. 

Adiponectin, one of the most studied adipocytokines, 
was also studied in cancer starting 2003 when Miyoshi 
et al. showed that its levels are decreased in breast cancer 
[91, 92]. Beyond its protective roles against T2DM, MetS, 
cardiovascular diseases, hypertension, etc., adiponectin 
seems to have protective effects against carcinogenesis 
through its anti-proliferative, anti-migration and pro-
apoptotic properties, suggesting that this adipokine could 
be an important regulator of carcinogenesis and cancer 
progression [92–95]. Furthermore, studies have indicated 
that decreased levels of adiponectin are associated with 
an increased risk of cancer at different sites (colorectal, 
prostate, endometrium, leukemia). 

Additionally, experimental studies have suggested a 
possible link between adiponectin and IGF-I in the tissues 
that express receptors for these proteins [96]. A study 
which analyzed the relationship between adiponectin and 
IGF-I in patients with obesity after weight loss showed an 
increase in the levels of both IGF-I and adiponectin after 
by-pass surgery, but their levels were not correlated [97]. 
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Figure 2 – The roles played by adipocytokines in obesity-related cancers. iNampt: Intracellular nicotinamide phospho-
ribosyl-transferase; RBP4: Retinol-binding protein 4. 

Recently, studies associated low adiponectin levels with 
concomitant dysregulations of IGF-I, with an increased 
risk of developing obesity-related malignancies and more 
aggressive phenotypes [96, 98]. Studies showed that in 
breast cancer there seems to be a cross-talk between 
adiponectin and IGF-IR [98]. It was proposed that adipo-
nectin is capable to modulate the stimulatory effects of 
IGF-I in breast cancer cells in relationship with estrogen 
receptor alpha (ERα) status, low concentrations of adipo-
nectin potentiating the anchorage independent growing 
induced by IGF-I in ERα-positive cells [93]. 

Many studies have focused on the role of leptin in 
cancers, but the results are discordant. Until now, a few 
meta-analyses showed higher levels of leptin in women 
with obesity and breast cancer, as well as an increased 
risk for endometrial cancer [99, 100]. 

Apelin, a novel adipokine, was identified and named 
after the orphan GPCR angiotensin II receptor-like 1 (APJ), 
to which acts as a ligand. The apelin/APJ system seems to 
be regulating many physiological processes, such as blood 
pressure, fluid homeostasis, cardiac contractility, energy 
metabolism, angiogenesis, as well as many pathological 
processes like obesity, diabetes, cardiovascular diseases 
and cancer [101]. Many types of cancer (cholangio-
carcinoma, gastroesophageal, prostate, endometrium, 
ovarian, lung, oral) have been associated with higher levels 
of apelin, which was proposed as a cancer progression 
marker [93, 101]. Furthermore, apelin may play a role in 
tumor cell growth, migration, invasion and metastasis 
induction [93, 101]. 

Other novel adipokines [visfatin, chemerin, resistin, 
retinol-binding protein 4 (RBP4), osteopontin, oncostatin, 
omentin-1, etc.] were also studied in the association 
obesity, T2DM and malignancy. 

Visfatin, also known as nicotinamide phosphoribosyl-
transferase (Nampt) or pre-B-cell colony enhancing factor, 
is a novel adipokine having insulin-mimetic effects, which 
studies have associated with obesity related cancers, 
such as colorectal, breast and endometrium cancer, its 
upregulation in these forms of cancer being associated 
with advanced stage and grade as well as worse prognosis 
[93, 102, 103]. This protein presents two forms, extra-

cellular (eNampt) and intracellular (iNampt), both being 
associated with cancers [102, 104]. eNampt plays proli-
ferative, anti-apoptotic, pro-inflammatory and pro-angio-
genic roles, leading to the upregulation of important 
signaling pathways, such as MAPK, ERK-1, ERK-2, 
Notch-1, p38 [93, 105, 106]. Regarding iNampt, its over-
expression was reported by histopathological studies in 
many forms of cancer including breast, endometrium, 
ovary, prostate, colorectal, gastric, pancreatic cancers, 
etc., its upregulation being associated with increased 
cancer grade, higher tumor stage and poor survival [102]. 

Described as an adipokine with higher concentrations 
in subjects with obesity and MetS in 2007 [107, 108], 
chemerin is a protein with roles in adipocyte metabolism, 
adipogenesis and immunity [93, 109]. Recent studies 
showed that chemerin may also play a role in obesity-
induced cancers, increased levels of this protein being 
identified in patients with gastric, esophageal and colo-
rectal cancers [93, 100, 110]. Wang et al. focused on the 
roles played by chemerin in gastric cancer and showed 
that this protein is present in significantly higher concen-
tration in patients with gastric cancer, starting from stage 1, 
compared to healthy controls [100]. The same study proved 
that chemerin increases invasiveness and spread of gastric 
cancer cells, but not their proliferation, leading thus to 
the progression of gastric cancer [100]. Zhang et al. 
evaluated the prognostic significance of plasma chemerin 
levels in patients with gastric cancer, showing that patients 
with gastric cancer who had higher preoperative levels of 
chemerin had a poor prognostic and disease-free survival 
(DFS) and OS [111]. 

Identified as an adipokine in 2001, resistin was 
associated with insulin resistance and was thought as a 
link between obesity and T2DM [112]. Studies analyzing 
resistin since 2001 showed that this protein has pro-
inflammatory effects, activating p38, MAPK and nuclear 
factor-kappa B (NF-κB), leading to an increased production 
of TNF-α and IL-12 [93, 113–115]. Resistin was proposed 
as a link between chronic inflammation, obesity, T2DM and 
malignancy, due to its proinflammatory, proangiogenic, 
antiapoptotic and proliferative effects [113]. Studies have 
investigated the levels of resistin in different forms of 
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cancer, such as breast, prostate, liver, colorectal cancers 
[109]. In a recent meta-analysis, Gong et al. observed 
significantly higher resistin levels in patients with obesity 
related cancers, suggesting that resistin is an independent 
biomarker, but not a predictor of obesity-related malignancy 
risk [114]. 

Osteopontin is another pro-inflammatory adipokine, 
which produces its effects through matrix metalloproteinase 
(MMP)-2 and MMP-9 activation [93]. This adipocytokine 
is also involved in tumorigenesis, being able to modulate 
the expression of genes which play a role in cell proli-
feration, invasion and migration, as well as angiogenesis 
[115]. Different types of cancers, including breast, ovarian, 
stomach, colorectal, lung and melanoma are associated 
with an overexpression of osteopontin [93, 116, 117]. A 
2013 study conducted by Thorat et al. concluded that 
overexpression of osteopontin in breast cancer subtypes 
overexpressing human epidermal growth factor receptor 2 
(HER2) may be associated with increased aggressiveness 
and proposed osteopontin as a prognostic and diagnostic 
biomarker in breast cancer [118]. Furthermore, a meta-
analysis analyzing the role of osteopontin as a biomarker 
for cancers showed that high levels of osteopontin were 
associated with a poor prognosis, with decreased DFS 
and OS [119]. 

Produced mainly by the liver and with secondary site 
by adipocytes, RBP4 acts as a vitamin A/retinol acid carrier, 
whose overexpression of RBP4 from adipose tissue was 
associated with different forms of cancer, including breast, 
endometrium, liver, pancreas, colon cancers [93, 120, 
121]. RBP4 exerts its oncogenic effects by binding to  
its receptor, signaling receptor and transporter of retinol 
STRA6, leading to recruitment and activation of tyrosine 
kinases Janus kinases (JAKs), which phosphorylate the 
oncogenic transcription factors STATs (signal transducers 
and activators of transcription) having as a final result 
inflammation, oncogenic transformation, cell survival, cell 
proliferation, invasion, as well as angiogenesis [121]. 

Another adipocytokine, which promotes carcinogenesis 
through JAK/STAT signaling, as well as MAPK signaling, 
is oncostatin M [93, 122]. Studies associated the production 
of oncostatin M from adipose tissue with breast cancer 
progression, the upregulation of JAK/STAT3 pathway 
being incriminated as the responsible mechanism [122]. 
A study published in 2012 has associated high oncostatin 
M expression with poor outcome in patients with breast 
cancer by downregulation of the ER [123]. Furthermore, 
a recent breast cancer mouse model study suggested that 
this protein plays a very important role in metastasis and 
progression of breast cancer, peritumoral injection of 
recombinant human oncostatin M increasing the lung 
metastases and the numbers of circulating tumoral cells 
and reducing survival [124]. 

Described for the first time in 2006, omentin-1, also 
known as intelectin-1, is an adipocytokine that enhances 
the effects of insulin via AKT signaling [125]. In pathological 
conditions, such as obesity, MetS, hypertension, lower 
levels of omentin-1 were identified, suggesting the possible 
use of this protein as cardiovascular risk marker [93]. 
Regarding the roles played by omentin-1 in oncogenesis, 
studies have associated omentin-1 with better outcomes 
in gastric and colorectal cancers [93, 125–127], which 

led to the belief that this protein might have a protective 
role against cancers. 

 Conclusions 

Over the last decades, chronic diseases, which include 
cancer, diabetes, cardiovascular diseases, have become 
a major public health problem, as they cause premature 
mortality. Obesity is also an important public health issue, 
being responsible for several comorbidities, including 
cancers. As we are just begin to understand the mechanisms 
linking cancer, obesity and T2DM and in the context  
of the continuously raising their prevalence, a general 
prevention program addressing obesity and T2DM might 
also have beneficial effect on decreasing cancer prevalence 
and mortality. Further research is essential for a better 
understanding of the mechanisms linking these conditions, 
which will open the road for novel therapeutic strategies 
addressing diabetes-related and obesity-related cancers. 
Both classical molecular pathways involved in these 
associations (such as IGF system, adipokines, chronic 
inflammation), as well as newly described mechanisms 
(involving PTEN, GPCRs, β-arr signaling), are already 
in study and hopefully, in the near future, promising 
molecules targeting cancer will be developed. 
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