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Abstract 
Uterine leiomyomas, also known as uterine fibroids (UFs), are benign smooth muscle cells tumors, the most frequent tumors in women. 
Even though UFs are monoclonal tumors, they contain a heterogeneous and versatile cells population. There are scarce proofs about the 
processes of transdifferentiation that might occur in UFs, modify the tumor microenvironment and support blood and lymph vessels formation. 
The stromal niches of the UFs harbor cells with angiogenic/lymphangiogenic, as well as with vasculogenic/lymphvasculogenic potential, which 
belong to a phenotypic continuum between the endothelial and mesenchymal lineages. Within these niches, the expressions of CD44 and 
podoplanin were less investigated and regarded as markers of such processes of transdifferentiation. 
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 Introduction 

Uterine leiomyomas, also known as uterine fibroids 
(UFs), are benign smooth-muscle cells tumors and represent 
the most frequent tumors in women [1–3]. They are 
regarded as a major public health problem [4], but the 
degree to which UFs contribute to infertility is controversial 
[5, 6]. Even though UFs are monoclonal tumors [1, 2], 
they contain a heterogeneous cells population, with smooth 
muscle cells and fibroblasts being the major constituents 
[7]. Although the etiology of UFs is unknown, it was 
hypothesized their development from myometrial cells 
transitioning into a fibrotic tissue with myofibroblastic 
characteristics [3]. The cell composition is different in 
small and large UFs [7]. The microvascular bed in UFs 
is reduced compared to the normal myometrium [8] in 
larger, but not seedling fibroids [7]. 

There are scarce proofs about the processes of 
transdifferentiation that might occur in UFs, modify the 
tumor microenvironment and support blood and lymph 
vessels formation. However, the stromal niches of the 
UFs harbor cells with angiogenic/lymphangiogenic, as 
well as with vasculogenic/lymphvasculogenic potential, 
which belong to a phenotypic continuum between the 
endothelial and mesenchymal lineages. 

 Tumor-associated stromal cells 

The tumor niches are inhabited by a heterogeneous 

population of cells, the bulk tumoral cells and supporting 
cells; the latter [endothelial cells (ECs), pericytes, adipocytes, 
fibroblasts, mesenchymal stem cells (MSCs)] are recruited 
from the nearby stroma and are involved in tumor angio-
genesis, proliferation, invasion, metastasis and therapeutic 
resistance [9]. 

CD44, podoplanin, tumor-initiating cells 

A subpopulation of cells in leukemia and several solid 
tumors of epithelial origin have been termed cancer stem 
cells (CSCs), or tumor-initiating cells (TICs), or cancer-
initiating cells (CICs) [10, 11]. TICs are characterized 
by high clonal expansion capacity and are responsible 
for generating and sustaining tumors, being resistant to 
chemo- and radiotherapy [12–15]. Moreover, TICs are 
potentially the cause of tumors that reiterate the histology 
of primary tumor at remote locations, which they reach 
through the lymphatic or blood vessels [14]. TICs grow 
on serial transplantation in xenogeneic models [11]. 
Podoplanin, CD15, CD44, CD49f, CD105, CD133 and 
p63 are TICs-specific markers [10, 15–20]. p53 was 
shown to be a TIC-suppressor that binds to the promoter 
of CD44 and represses its expression [21]. However, p53 
represses the expression of more than 20 target genes 
that may contribute to the maintenance of the pool of 
TICs [21]. 

Podoplanin is a TIC-specific marker for the cell line 
A431 found in human squamous cell carcinoma [13]. 
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Podoplanin-expressing A431 cells share the expression 
of sonic hedgehog and CD44 with stem cells in normal 
squamous epithelium [13]. Podoplanin-expressing TICs 
have a high clonal expansion capacity resulted from  
a decreased cell death through podoplanin-mediated 
signaling [12]. 

As TICs frequently express CD44, the question on 
what are the effects of this protein was raised but, as the 
association of them is a recent finding, most information 
regarding the function of CD44 is rather circumstantial 
[11]. 

 The CD44 molecule and uterine 
leiomyomas 

CD44 is a polygamic cell adhesion glycoprotein 
molecule with the main ligands being hyaluronic acid (HA) 
and osteopontin [22–28]. CD44 is a well-known marker 
for stem cells and cancer stem cells [23, 24, 29–33]. The 
smallest CD44s isoform (standard or hematopoietic) is 
ubiquitously expressed on the membrane of most 
vertebrate cells of mesodermal and hemopoietic origin 
and is composed of 341 amino acids with a molecular 
mass of 85–90 kD [11, 34, 35]. Between the extracellular 
domains 5 and 6, can be inserted, through alternative 
splicing, up to 10 variant exon products, which can 
generate CD44 variant (CD44v) isoforms with distinct 
molecular weights [11, 34, 36, 37]. 

CD44 expression in uterine tumors 

Altered CD44 expression was associated with tumori-
genesis, carcinogenesis, and prognosis of tumors [38]. 
Its expression is decreased in leiomyosarcomas compared 
to leiomyomas and normal myometrium, which was 
considered with prognostic significance [38]. Moreover, 
CD44v3 is expressed in normal tissues and UFs, but the 
expression is lost in leiomyosarcomas, which might serve 
as diagnostic clue [5]. 

The expressions of CD44s, CD44v3, and CD44v6 are 
cyclic in the normal menstrual cycle, being downregulated 
in the proliferative phase and upregulated in the secretory 
phase [39]. Thus, the expression of CD44 is related to 
differentiation or maturation of endometrial glandular cells 
during the menstrual cycle [39]. Saegusa et al. showed a 
reverse correlation between the expression of CD44 and 
hormone receptor status potentially implying a link with 
ovarian hormones [39]. 

However, we could not identify in that report if, or 
how, the endothelial expression of CD44 was distinguished 
from the tumor cells expression of that marker. This is 
important for diagnostic purposes because CD44v3 is 
expressed in human immortalized and in vivo ECs, in 
which is mainly located in the cytoplasm, and only has a 
limited, filopodial, surface expression, being suggested 
to have a role in tumor-induced angiogenesis [40]. A 
CD44v3 blocker could prevent leukocyte extravasation 
by blocking CD44v3 on ECs [41]. 

Therefore, a reduced or absent expression of CD44 
isoforms in leiomyosarcomas could equally indicate a 
decreased vascular or angiogenic potential in these 
tissues. In these regards, it is to be noted that different 
studies found a decrease of the CD31 expression and 
microvessels density in large UFs compared to incipient 

UFs [7]. The vascular area and microvessels density are 
reduced in UFs compared to normal myometrium [8], 
and in uterine smooth muscletumorscompared to normal 
myometrium [42]. 

CD44 in the stem niche of uterine fibroids 

CD44 is a typical MSC marker, as are CD73, CD90 
and CD105 [43]. A study performed on samples of human 
myometrium and UFs evaluated the presence of Stro-1+/ 
CD44+ isolated myometrial/fibroid stem cells that were 
ABCG2+/Oct4+/Nanog+/GDB3+ undifferentiated cells, 
corresponding to the minimal standards of identification 
for MSCs: they expressed CD73, CD90 and CD105, did 
not express hematopoietic stem cells (HSCs) markers, 
and were able to differentiate towards the adipogenic, 
chondrogenic and osteogenic lines [1]. Such Stro-1+/ 
CD44+ cells formed fibroid-like lesions when xenografted 
[1]. Therefore, CD44 and Stro-1 were assumed as putative 
MSCs markers in UFs [1]. 

However, the expression of Stro-1 in stromal cells, which 
is commonly regarded as a MSCs marker, is an induced 
event, as Stro-1 is intrinsically an endothelial antigen [44–
46]. Therefore, UFs cells identified as Stro-1+/CD44+ 
could be either endothelial descendants or ascendants. 

 CD44, an endothelial and vasculogenic 
molecule 

Endothelial expression of CD44 

CD44 has a specific role in the normal functioning 
of ECs [47]. Endothelial cells have specialized plasma 
membrane microdomains containing the non-specific 
protein caveolin-1 [48]; HA recruits CD44 into these 
caveolin-enriched microdomains and CD44 interacts in 
these situses with the underlying actin cytoskeleton [49]. 

CD44 mediates several of its effects on endothelial 
through the modulation of adhesion protein expression 
[25]. It mediates the vascular barrier integrity by regulating 
CD31 expression and mediates apoptosis and the proli-
feration of microvascular ECs by modulating CD31 and 
vascular endothelial (VE)-cadherin expression, and the 
Hippo pathway [25]. 

The interaction between CD44 and its ligand HA 
enhances the pro-apoptotic effect of transforming growth 
factor-beta 1 (TGF-β1) but does not enhance the effect of 
the anti-angiogenic thrombospondin-1 on ECs, contributing 
to the degeneration of the capillary network [28]. 

Although there are discrepancies regarding the 
expression of CD44 on ECs, which is variably reported 
as either negative or positive, it was demonstrated that 
CD44 is an activation antigen on human ECs and has  
an enhanced expression in solid tumors, the ECs being 
efficiently killed by targeting a specific immunotoxin to 
CD44 [50]. A strong endothelial expression was found for 
variant isoforms v5, v7–8, and v10, while the expression 
was weaker for v3 and v6 [51]. 

CD44 contributes to the organization and stabilization 
of the endothelia of forming or newly formed vessels, 
and the loss of its endothelial expression impairs in vivo 
angiogenesis [47]. 

Neovessels of uterine fibroids 

Neovascular structures are a common finding in UFs 
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[52]. In adults, endothelial regeneration neovessels formation 
occurs either by angiogenesis from preexisting resident 
endothelia, or by vasculogenesis from endothelial precursor 
cells [53]. Angiogenesis occurs by sprouting and non-
sprouting (intussusception or elongation) mechanisms [54]. 

Mature hematopoietic cells, such as are myeloid cells, 
derive from HSCs and hematopoietic progenitor cells (HPCs) 
from the bone marrow (BM); monocytes, granulocytes, 
platelets and even HSCs/HPCs have been shown to be 
involved in vascular repair, is thus difficult to discriminate 
from circulating endothelial progenitor cells (EPCs) [53]. 
Although CD45 is a common marker for hematopoietic 
cells, it was also found expressed in EPCs [53]. 

Vascular endothelial growth factor (VEGF) facilitates 
both vasculogenesis and angiogenesis [55–57], controls 
lymphatics’ growth [57], and is produced in many solid 
tumors [57]. Vascular endothelial growth factor receptor-3 
(VEGFR-3) is an angiogenetic mediator for lymphatics 
[57, 58]. Even though a strong VEGF reaction was detected 
in the cytoplasm of uterine smooth muscle cells and UF, 
the VEGF expression was not correlated with the clinical/ 
pathological parameters in UF or myometrium, and no 
relation between VEGF expression and the vascular area, 
microvessel density and vascular luminal area was found 
[8]. 

The expressions of VEGF-C, its receptor VEGFR-3, 
and CD44 were researched using feline mammary samples 
and between the expression of CD44, and the number of 
lymphatic vessels with VEGFR-3a, was identified an 
inversely proportional correlation in malignant infiltrating 
tumors [57]. It was, therefore, suggested limited biological 
importance of the intratumoral lymphatics [59]. 

CD44, matrix metalloproteinases (MMPs) and 
neovessels formation 

Pericellular proteases, such as the MMPs, play important 
roles during the processes of neovessels formation [60]. 
MMP-9 stimulates angiogenesis and localizes to the 
membranes by binding to the CD44 [60]. MMP-9 acts as 
a processing enzyme that cleaves CD44; this event quickens 
cell motility, and inhibition of either CD44 or MMP-9 
inhibits cell migration [61]. During fibrosis, the pool of 
myofibroblasts is supplied by epithelial-to-mesenchymal 
transition (EMT) processes, in which structural changes 
are regulated by the receptor for advanced glycation end-
products (RAGE) [62]. The RAGE expression is decreased 
after cytokine stimulation, with the release of its soluble 
isoform via an MMP-9-dependent mechanism; in pulmonary 
fibrosis, RAGE is markedly decreased, while the levels of 
CD44 are enhanced [62]. 

The CD44 expression is associated  
with vasculogenic structures 

The functions of CD44 include the modulation of the 
cell to cell and cell to matrix interactions, the activation 
of cell survival responses, the induction of cell motility 
and the activation of lymphocytes and monocytes [25, 
36, 63, 64]. CD44 mediates an HA-dependent cell adhesion 
that promotes invasion, but also increases neoangiogenesis, 
and secondarily stimulates tumor cell proliferation [57]. 

The role of HSCs and BM-derived EPCs is largely 
accepted [65]. BM-derived EPCs are critical regulators 

of the angiogenic switch and are recruited luminally to 
the neovessels in metastases during the progression from 
micrometastases to macrometastases [66, 67]. 

In tumors, neovessels equally result from the pre-
existing vasculature and by de novo luminal recruitment 
of BM-derived EPCs [68]. Early tumors recruit in their 
periphery BM-derived EPCs that further differentiate  
in ECs and incorporate into angiogenic sprouts; in late 
tumors, BM-derived vessels are diluted with non-BM-
derived vessels from the periphery [68]. These BM-derived 
EPCs express VE-cadherin, CD31low, CD105 and CD133 
[68]. A different study identified, but without testing 
whether they are of extratumoral origin, non-tumorigenic 
CD133-expressing endothelial stem cells (ESCs) in human 
ovarian cancer cells, which are attracted by TICs and 
thus augment tumor development through their capacity 
of establishing an entire endothelial cell hierarchy [66]. 

Several subsets of monocytes-derived circulating 
progenitor cells were classified and include early and 
late EPCs [69]. ECs derived from cultured monocytes 
simultaneously express macrophage/monocyte markers 
(CD68, CD80, CD45, CD36) and EC markers (CD31, von 
Willebrand factor, Tie-2) [70]. VEGF and angiopoietin-1 
could be regarded as critical inducers of monocyte 
differentiation toward the endothelial cell lineage [70]. 

Aggressive tumor cells can transdifferentiate into 
cells with endothelial features and are able to generate 
vasculogenic networks by vasculogenic mimicry, which 
may increase tumor malignancy and lead to a poorer 
prognostic [24]. The CD44/c-Met cascade is heavily 
relevant for the vasculogenic mimicry, CD44 being over-
expressed in aggressive tumors [24]. The standard isoform 
CD44s and the splice variant CD44v6 were related to 
the increased aggressiveness in vascular mimicry, being 
also observed that CD44 expression is associated with 
vasculogenic structures [24]. Tumor cells increase their 
chances of survival by adopting mechanisms appertaining 
to angiogenic endothelial cells [24]. 

 Transdifferentiation processes make the 
stem niches versatile 

MSCs are versatile players that generate variable 
molecular and morphological phenotypes within the 
stem niches. 

The mesenchymal–endothelial transition 
contributes to neovascularization 

Postischemic fibroblasts were shown to adopt an 
endothelial fate by gaining the anatomical and functional 
phenotype of endothelial cells through mesenchymal- 
to-endothelial transition (MEndT), which contributes to 
neovascularization [71]. In these regards, telocytes (TCs), 
which were previously suggested to belong to the endothelial 
lineage [72–74], could be intermediate stages during such 
a MEndT. It is, however, difficult to assess the phenotypic 
switch involved, as an endothelial-to-mesenchymal transition 
(EndMT) could occur instead of a MEndT [75]. Moreover, 
the endothelial differentiation potential of MSCs is debatable 
and may be contingent on the origin of the tissue [43]. 
In vitro experiments indicate a mesodermal origin of 
MSCs from precursors with angiogenic potential, namely 
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mesenchymoangioblasts, which should be further tested 
in vivo conditions [76]. 

BM-derived MSCs promote angiogenesis as 
well as lymphangiogenesis 

BM-derived MSCs promote angiogenesis through the 
recruitment of EPCs, the differentiation into ECs and 
pericyte-like cells, the secretion of soluble angiogenic 
factors, such as VEGF-A or basic fibroblast growth factor 
(bFGF), and the release of exosomes [77]. 

BM-derived MSCs stimulate lymphangiogenesis through 
a direct effect on lymphatic endothelial cells (LECs) via 
the secretion of VEGF-A [77]. As they are important sources 
of VEGF-A, MSCs and macrophages exert synergistic 
effects on in vivo lymphangiogenesis [77]. MSCs also 
express other lymphangiogenic factors, such as epidermal 
growth factor (EGF), fibroblast growth factor-2 (FGF-2), 
hepatocyte growth factor (HGF), and insulin-like growth 
factor-1 (IGF-1) [78]. 

MSCs acquire a lymphendothelial phenotype 

Adult lymphangiogenesis is limited to sites of chronic 
inflammation, tissue injury or remodeling and cancer, 
and is initiated by the activation of LECs’ VEGFR-3 by 
its ligands, VEGF-C or VEGF-D [79]. These VEGFR-3 
ligands can be produced by immune cells, stromal cells, 
epithelial cells or malignant cells [80]. Tumor-induced 
lymphangiogenesis is essential for metastasis, as the spread 
of the cancerous cells typically begin with lymphatic-
assisted cell passage to lymphatic nodes [81]. 

Conflicting evidence indicates that tumor-associated 
lymphatics may be primarily formed from foregoing 
lymphatic networks through a process of vessel sprouting 
[82]. 

MSCs may express a lymphatic phenotype when put 
in contact with VEGF-C and lymph-inductive media [82]. 
Adult lymphatic endothelial progenitor cells (LEPCs) derive 
not only from MSCs, but also from other precursors, 
such as HSCs, adipose-derived stem cells (ADSCs), and 
myeloid stem/progenitor cells (EPCs, myeloid-derived 
LEPCs) [79]. The LEPCs coexpress: (a) markers of their 
parent lineages (mesenchymal or myeloid), (b) stem/ 
progenitor markers and (c) lymphatic-specific markers, 
such as are podoplanin or lymphatic vessel endothelial 
receptor-1 (LYVE-1) [79]. Myeloid LEPCs thus express 
the common HSC markers CD133 (prominin) and CD34, 
but the expression of CD117/c-kit and Sca-1 was also 
reported [65, 79, 83]. It is interesting to note in this 
context that TCs, stromal cells with a peculiar morphology, 
are consistently reported to have CD34+ and c-kit+ and 
Sca-1 phenotypes [72, 84–97]. 

The CD68+ osteoclast-like giant cells 
(OLGCs) in uterine leiomyoma 

OLGCs are rarely encountered in the uterus, but 
described in leiomyosarcomas, and also uterine leiomyoma, 
when they expressed CD68 [98]. Such tumor-associated 
OLGCs have a controversial origin, either from osteoclasts, 
epithelial cells, or macrophages/monocytes/histiocytes [99]. 
It was demonstrated that OLGCs differentiated from 
BM-derived macrophages promote tumor growth and 
lymphangiogenesis by secreting VEGF-C [100]. 

The endothelial–mesenchymal transition 

The EndMT regulates pathological processes, such as 
cancer and fibrosis [101–103]. Most commonly, TGFs-β 
and bone morphogenetic proteins (BMPs) stimulate the 
processes of EndMT, which, in turn, are inhibited by 
VEGF-A, fibroblast growth factor receptor 1 (FGFR1), and 
various microRNAs (miR-15a, miR-23b, and miR-199a) 
[101]. The EndMT can generate fibroblasts, cancer-
associated fibroblasts (CAFs) and CSCs [101, 104]. The 
EndMT is not the only mechanism generating fibroblasts 
and fibrosis, as they could equally derive from resident 
fibroblasts, or from BM-derived circulating progenitor cells, 
monocytes and fibrocytes [105]. Such CD34-expressing 
fibrocytes are predominantly bipolar in uterus [106], their 
phenotype being mostly identical to CD34+ TCs [93]. 

Endometrial miR-200c regulates the expression of 
angiogenic factors such as VEGF-A, FLT1 (VEGFR-1), 
and fibulin 5 (FBLN5), and it undergoes dynamic changes 
during the transition from normal into cancerous states 
[107]. It was assessed that miR-200c, which plays central 
roles in EMT and mesenchymal-to-epithelial transition 
(MET) [108], is aberrantly expressed in UFs [3]. miR-200c 
induces the senescence and apoptosis of ECs [109].  
In turn, ECs apoptosis can cause EndMT through the 
upregulation of TGF-β1 in both apoptotic and viable ECs 
[101, 110]. 

The mesothelial–epithelial transition 

Among the targets of the miR-200 family are the Zn-
finger transcriptional repressors ZEB1 and ZEB2, and it 
was demonstrated that a miR-200/ZEB double-negative 
feedback loop regulates the processes of mesothelial-to-
epithelial transition (MesoET) [108]. On the other hand, 
the mesothelial cells co-express mesenchymal and epithelial 
markers [108], being thus able to supply tissues with 
mesenchymal cells resulted from EMT processes. 

Mesothelial cells, as well as ECs, are mesodermally-
derived simple squamous epithelial cells [111]. In these 
regards, a direct influence of miR-200c on the EndMT 
processes in UFs is suggested, which is supported by the 
miR-200c positive influence on cancer ECs migration and 
tumor angiogenesis [112]. 

Interestingly, miR-200c was found equally involved 
in the biology of cancer, as well as normal stem cells: 
miR-200c-141, miR-200b-200a-429, and miR-183-96-182 
were found to be downregulated in normal mammary stem 
cells, in human breast CSCs, and in embryonal carcinoma 
cells; moreover, miR-200c modulates the expression of 
BMI1, a known regulator of stem cell self-renewal [113]. 

The endothelial–hematopoietic transition 

In zebrafish embryos was shown that HSCs emerge 
from the endothelial tube through a stereotyped process, 
which encompasses a strong twisting followed by egress 
of single endothelial cells from the ventral vascular  
wall into the perivascular space, and their simultaneous 
conversion toward HSCs [114]. A distinct perivascular 
niche of HSCs and HPCs was suggested recently, being 
indicated that human CD146+ perivascular cells could be 
the equivalents of the perivascular hematopoietic niche 
[115]. On the other hand, CD146, as well as Stro-1, are 
well-recognized markers of MSCs [73, 116–120], which, 
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in turn, could derive either from ECs or pericytes (PCs) 
[121–124]. 

A subset of pericytes could derive  
from endothelial cells 

Weibel–Palade bodies (WPBs) are characteristic to ECs 
[74]. However, dense bodies similar to the ones found 
in endothelial cells were also identified in pericytes 
within the dental pulp stem niche [124]. As also partly 
mural and partly perivascular transitional cells were 
found harboring such WPBs-like [124], an endothelial 
origin of these WPBs-containing non-ECs is suggested. 
As processes of pericyte–(myo)fibroblast transition (PFT) 
occur in various tissues [125–129], a complete multistage 
continuum from ECs to stromal cells is pictured. PFT 
significantly contributes to tumor invasion and metastasis 
[130]. 

The endothelial–mesenchymal–endothelial 
cycle 

A two-steps cycle of cell-fate transition, in which 
EndMT leads to the formation of MSCs, which, in turn, 
differentiate back into endothelial cells through a MEndT, 
was proposed as a circuit controlling the reversibility in 
cell-fate determination [59]. 

 Uterine telocytes at a glance 

Most ultrastructural features of TCs, formerly known 
as interstitial Cajal-like cells (ICLCs) [131], are similar 
to those of the LECs. 

Creţoiu et al. found evidence of myometrial TCs 
[132], but the authors failed to indicate why these TCs 
are not LECs; when that paper [132], as well as other 
papers dealing with uterine TCs [94, 133] were searched 
for the keyword “lymphatic”, nothing was returned. The 
evidence of myometrial TCs in transmission electron 
microscopy could equally demonstrate initial lymphatics 
with large collagen-free lumina (Figure 1) [132], or WBCs-
containing lumina [134]. This because the telopodes (Tps), 
which are the long, thin, and moniliform prolongations 
of TCs, are not enough to characterize these cells as a 
distinctive cell type [74, 135]. 

Cultured myometrial TCs were found expressing 
CD34, which is usually regarded as an HSC marker,  
c-kit, commonly regarded as a stem/progenitor marker, 
platelet-derived growth factor receptor-alpha (PDGFR-α), 
which labels a plethora of cell types, and vimentin, which 
is equally expressed in mesenchymal and endothelial cells 
[94, 133, 134, 136, 137]. The expressions of CD34, 
vimentin, and connexin-43 were detected in endometrial 
TCs [138]. 

The expression of c-kit in TCs was found in normal 
myometrium but not in leiomyomas [139], which is 
intriguing because they are constantly populated by c-kit 
expressing cells [135]. The c-kit expression is, apparently, 
not enough to distinguish between a TC, a stem/progenitor 
cell, or an EPC. 

 Podoplanin, not just a lymphatic marker 

Podoplanin is a 38-kD transmembrane mucin-type 
glycoprotein that is highly expressed in podocytes, 

keratinocytes, the cells of the choroid plexus, alveolar 
lung cells, LECs, and is involved in lymphatic function, 
EMT processes and tumor progression [140, 141]. Although 
it is a lymphatic endothelial and epithelial marker [142], 
podoplanin was also found in intratumoral stromal cells, 
which can function as normal stromal cells [141]. 

Several anti-podoplanin antibodies are available, 
including NZ-1, D2-40, AB3 and 18H5 [143]; the epitope 
of NZ-1 is the platelet aggregation-stimulating (PLAG) 
domain 2/3; D2-40, AB3, and 18H5 have a common 
epitope, namely PLAG1/2 [143]. 

Lymphangiogenesis and lymph metastasis are 
induced by the cell expression of podoplanin 

Lymphatic neovascularization is attained through two 
interdependent ways: lymphangiogenesis (the formation 
of new lymphatic vessels from preexisting lymphatic 
vasculature) and lymphvasculogenesis (the de novo 
generation of the lymphatic vessel through stem or 
progenitor cells) [65]. 

Both angiogenesis and lymphangiogenesis occur in 
response to tissue injury or cancer, in which macrophages 
are activated, and their number increased [144]. 

Lymphangiogenesis is a very early step in the 
lymphatic metastasis and is influenced by the niche 
constituents of the tumors, namely tumor cells, CAFs, 
MSCs, dendritic cells, macrophages, the extracellular 
matrix, cytokines and growth factors [145]. 

The lymphatic vessels play roles in human cancers 
and is known that the cell lymphatic invasion of a tumor 
may influence the prognosis in a significant manner.  
It is not acknowledged yet if pre-existing lymphatics  
are sufficient for tumor dissemination or it is needed a 
de novo development [57]. 

Podoplanin is included in shedded vesicles and 
exosomes, where it colocalizes with CD63; these 
podoplanin-expressing exosomes are known to increase 
lymphangiogenesis; CD63+ LECs could have a TC-like 
morphology [135]. 

It was demonstrated that the expression of podoplanin 
in tumor cells induces tumor lymphangiogenesis without 
determining an increase in the volume of the primary 
tumor [146]. A role for VEGF-A in tumor-mediated 
lymphangiogenesis has also been reported, being involved 
the recruitment of BM-derived LEPCs [147]. 

Endothelin-1, villin-1, and tenascin-C appear as potential 
mediators of podoplanin-induced tumor lymphangiogenesis 
[146]. Podoplanin upregulates the expression of the 
endothelial-derived vasoconstrictor 21-amino acid peptide 
endothelin-1 in vivo, which, in turn, is a major pro-
angiogenic factor [146, 148–152]. Endothelin-1 and VEGF-A 
promote tumor-progression through an angiogenic-
independent EMT mechanism [148], and fibrosis through 
an EndMT mechanism [153–156]. Endothelin acts as an 
in vivo and in vitro activator of macrophages [157], and 
it can also stimulate platelets [158]. In the human 
leiomyoma, endothelin-1 mRNA expression is upregulated, 
this peptide being involved in normal myometrial and 
leiomyoma cell proliferation and survival [152]. Endothelin-1 
acts through the endothelin receptors A and B, but the 
potential role of these receptors in the pathology of uterine 
leiomyoma tumors remains to be established in vivo [152]. 
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Figure 1 – Cropped and modified in Adobe Photoshop CC to 
grayscale colors from Figure 1 from [132] and reprinted from 
John Wiley and Sons, which is licensed under CC BY 4.0. 
The original caption details are: “Representative ultrathin 
section of the human non-pregnant myometrium. Two-
dimensional sequenced concatenation from eight serial 
electron micrographs depicting the 3D network of telocytes. 
Oblique section through smooth myocytes (brown) (SMC) 
are bordered by numerous Tps (blue) interconnected by 
homocellular junctions (dotted circles) forming a 3D network. 
The inset illustrates the diagram of the interstitial network 
built-up by TCs and Tps with uneven calibres: podoms and 
podomers. Exosomes and shedding vesicles (arrowheads) are 
digitally coloured in purple. coll: collagen; m: mitochondria; 
mvb: multivesicular bodies; N: nucleus.” However, TCs and 
Tps limit collagen-free lymphatic lumina-like spaces (we 
indicated these with white arrows). 

The myeloid–lymphatic transition 

Heterogeneous subpopulations of monocytes and 
different macrophages form the mononuclear phagocyte 
system [159]. Macrophages represent the end-stage of 
differentiation of circulating monocytes [160]. Antibodies 
to CD68 recognize a 110-kD glycoprotein on tissue 
macrophages and blood monocytes [160, 161]. 

In a variety of tissues, there are close interconnections 
between macrophages with endothelia, epithelia and 
parenchymal cells [159]. Myeloid-derived lymphatic 
endothelial cell progenitors (LECPs) are induced through 
processes of inflammation and have important functions 
in adult lymphangiogenesis [81]. This process was 
indicated as myeloid–lymphatic transition (MLT) [81]. 
Macrophage-derived or myeloid/monocyte-derived LECPs 
(M-LECPs) were demonstrated to contribute to new 
lymphatic vessel formation [80]. LECPs exist in humans 
and significantly impact cancer pathology [81]. Moreover, 
the tumor-associated macrophages release a series of 
lymphangiogenic molecules, including VEGF-A, VEGF-C, 
VEGF-D, platelet-derived growth factor (PDGF), or FGF-2 
[162, 163]. 

TC-like macrophages, the phagocytic properties of 
some TCs and CD68 expression in TC-like cells [73] 
would fit within the hypothesis of a MLT through inter-
mediate stages of TC-like cells. Such cells with mixed 
myeloid and lymphatic identity can integrate into pre-
existing lymphatic vessels before sprouting [81, 162]. 

 Conclusions 

The significance of CD44 and podoplanin expression 
in uterine leiomyomas was mostly overlooked, which 
makes the evaluation of these transdifferentiation processes 
difficult to assess. 
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