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Abstract 
Telocytes (TCs) are stromal cells with characteristic long, thin and moniliform prolongations termed telopodes. They were formerly termed 
interstitial Cajal-like cells. A characteristic set of markers to identify TCs in light microscopy has not been established until now. Transmission 
electron microscopy (TEM) is a better tool for identifying TCs. Telocytes display caveolae and can express caveolin-1. On the other hand, 
endothelial cells (ECs) as well as endothelial progenitor cells (EPCs) have caveolae. Recent evidence suggests that a subset of TCs are in 
fact EPCs. The distinction of this progenitor subset of TCs can be easily made by a specific set of ultrastructure markers, as follows. 
Caveolae of endothelial cells present stomatal diaphragms (SDs). The plasmalemma vesicle-associated protein-1 (PV-1), which is identical 
with the Pathologische Anatomie Leiden endothelium (PAL-E), is specifically identifying the ECs SDs of caveolae. We therefore raise the 
reasonable hypothesis that the EPCs subset of caveolae-presenting TCs could be accurately identified, without exploration in TEM, by the 
positive expression of PV-1 or PAL-E in the SDs. 

Keywords: EPCs, endothelial cells, PAL-E, stomatal diaphragms, telopodes. 

 Introduction 

Telocytes (TCs) are a peculiar type of stromal 
(interstitial) cells, which were renamed from “Interstitial 
Cajal-like Cells (ICLCs)” in an Editorial (Review-Article) 
published by Popescu & Faussone-Pellegrini in 2010 [1]. 
At that time, an ultrastructural standard of identification 
of TCs was indicated, and it included the (sub)plasma-
lemmal caveolae [1]. Telocytes’ peculiarity consists in 
their long, thin and moniliform prolongations termed 
telopodes (Tps), which consist of thin segments named 
podomers, and dilations named podoms [2–5]. This 
determined Popescu to simply define TCs as “cells with 
telopodes” [6]. It was repeatedly stated that the key tool 
for identifying TCs is the transmission electron microscopy 
(TEM) [1, 7–10], which raises doubts on different 
methods of TEM which were used to identify TCs. One 
should note here that different attempts of identifying a 
specific molecular phenotype of TC indicated CD34 as 
a suitable marker, although it is equally an endothelial, 
as well a mesenchymal one [11–20]. 

However, although numerous studies were published 
on TCs, their functional roles within stromal compartments 
are still blurred. Several studies indicate the CD34-
expressing telocytes as cells with progenitor capacity 
[13–15, 17, 21], which is in agreement with a previous 
assumption, that ICLCs “might represent stromal progenitor 
cells” [22]. Some other research groups claim that TCs 
“nurse” stem and progenitor cells within niches [23, 24]. 
Different molecular phenotypes, which were assigned to 
TCs, indicated their stemness capacity [3, 19]. The origin 
of TCs from circulating precursors was also suggested 
[20, 25]. It was critically reviewed that most of the 
functions assumed for TCs are purely hypothetic, and it 

was observed that there is no reference about TCs in the 
internationally accepted Terminologia Histologica [26]. 

 Caveolae, with and without stomatal 
diaphragms 

Caveolae, the 50–100 nm flask-shaped plasmalemmal 
organelles, were discovered in early 1950s and can be 
encountered in a variety of cells, such as endothelial cells, 
adipocytes, pneumocytes, fibroblasts, striated and smooth 
muscle cells (a detailed review on caveolae was published 
by Cohen et al. in 2004 and can be consulted) [27].  
In striated muscle, caveolae, as well as t-tubules, express 
common markers, such as is the dihydropiridine receptor 
(DHPR) [28, 29]. 

Endothelial cells (ECs) are provided with caveolae at 
blood and tissue fronts, these being plasmalemmal vesicles 
of 65–75 nm bound by typical unit membranes [30]. 

Stomata of endothelial plasmalemmal caveolae (or 
vesicles), but not of caveolae of any other cell types, are 
subtended by specialized structures called stomatal 
diaphragms (SDs) (Figure 1) [31–38]. Palade & Bruns 
(1968) described these structures as consisting of one or 
more dense layers, presenting a central thickening or 
knob [30, 39], and being anchored by fibrillar elements 
to the rim of the caveolar openings [40]. 

 Caveolins in caveolae-presenting cells 

Caveolins are integral membrane proteins specifically 
expressed in caveolae; three mammalian caveolins are 
known, caveolin-1, -2 and -3 [41]. Endothelial cells express, 
but not exclusively, only caveolin-1 and caveolin-2, while 
caveolin-3 is predominantly expressed in muscle cells 
[31, 41]. 
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Caveolin-1 and -3 play a key-role in the caveolae 
formation [42, 43]. Caveolin-1 is specific for caveolar coat 
ridges [44]. Caveolin-1 and caveolin-2 are co-expressed 
in the vast majority of cells or tissues [45]. Confined 
initially to muscular cells [46], caveolin-3 is expressed 
in different cellular types [47]. A short guide of caveolin-1 
and caveolin-3 specific expressions is presented in Table 1. 

 
Figure 1 – Transmission electron microscopy. Masseter 
muscle, rabbit. There are indicated stomatal diaphragms 
of endothelial caveolae (arrows) of an endomysial 
microvessel. m: Mitochondria; *: Z-disk of a striated 
muscular fiber. 

Table 1 – Caveolin-1 and -3 specific expressions 

Caveolin Expression Reference 

Endothelial cells [48, 49] 

Adipocytes [50, 51] 

Type I alveolar pneumocytes [52] 

Smooth muscle cells [43, 53] 

Osteoblasts [54] 

Leydig cells [55] 

Caveolin-1 

Airway epithelium [56] 

Skeletal muscle [57] 

Myocardium [58–60] 

Smooth muscle cells [46] 

Astrocytes [47] 

Caveolin-3 

Sinus endothelial cells [61] 

 PV-1 is PAL-E, as well as FELS,  
in endothelial cells 

A caveolae purification procedure was developed  
on luminal plasmalemmal patches from rat pulmonary 
vessels; caveolae were isolated by immunoabsorption 
on caveolin-coated microspheres and the only protein 
found to strictly colocalize with caveolin on the 
immunoisolated endothelial caveolae (ECav) was PV-1 
[plasmalemma vesicle(-associated) protein], formerly 
known as gp68 [36]. gp68 was initially isolated as a 
glycoprotein expressed in the developing mouse brain [62]. 
PV-1 (PV1) is a single-span, 60-kDa, type II membrane 
N-glycosylated glycoprotein with a short intracellular 
tail and a long extracellular domain [36]. PV-1 is so 

endothelium specific, and is specifically associated with 
the SDs of caveolae and transendothelial channels (TECs) 
and fenestral diaphragms (FDs) of ECs [37, 63]. 

To discriminate between vascular and lymphatic 
endothelia, several vascular endothelial specific markers 
were used in various studies, including CD105 (endoglin), 
CD34, von Willebrand factor (vWF) and Pathologische 
Anatomie Leiden endothelium (PAL-E, the anti-endothelium 
antibody) [64]. It was recently confirmed that the anti-
PAL-E antibody recognizes the PV-1 molecule, as does the 
PV-1 antibody [64]. Probably, the first found function 
of PV-1 is the leukocyte transendothelial migration, the 
transcellulary migrating lymphocytes being surrounded 
by rings which contain PV-1 and caveolin-1 [65]. Although 
PAL-E is identical with PV-1, as well as with the 
fenestrated endothelial-linked structure protein (FELS), 
it is however not identical with vimentin [66], although 
it is physically associated with this intermediate filament 
protein [65]. 

 A subset of telocytes are in fact 
endothelial progenitor cells 

Recently, brought evidence is suggestive for a subset 
of TCs actually being spindle-shaped endothelial progenitor 
cells (EPCs) [67]. It is interesting to note here that TCs 
within the skeletal muscle interstitium were indicated as 
expressing caveolin-1, c-kit and vascular endothelial 
growth factor (VEGF) [68]. Telocytes in human term 
placenta were found expressing CD34, c-kit, vimentin, 
caveolin-1, VEGF and inducible nitric oxide synthase, 
but this phenotype was assessed in cultures in which 
“cells resembling TC were successfully maintained” [69]. 
It should be observed that these markers are also indicative 
either for a hematopoietic lineage, or for an endothelial 
progenitor one. Early immature EPCs express hemato-
poietic cell markers (c-kit, CD34, CD133) and markers of 
the myeloid lineage, while in a more differentiated state 
EPCs lose expression of hematopoietic markers and gain 
expression of endothelial markers, such as vWF, VE-
cadherin, or caveolin-1 [70]. On the other hand, EPCs have 
a strong expression of angiogenic growth factors, such 
as VEGF [71]. The fact that different subsets of TCs, 
regarded as cells with Tps, exist, is also supported by 
previous evidence of caveolae-presenting TCs [72] and 
of caveolae-lacking TCs [73], these later being, or not, 
adequate candidates for the endothelial lineage. 

 Raising the hypothesis: PV-1 should 
differentiate without TEM exploration the 
subset of caveolae-presenting TCs, which 
belong to the endothelial lineage 

We therefore raise the reasonable hypothesis for the 
EPCs subset of caveolae-presenting spindle-shaped stromal 
cells/TCs being accurately identified, without exploration 
in TEM, by the positive expression of PV-1 or PAL-E 
in the SDs. This specific labeling needs however also an 
immunoelectron microscopy (IEM) testing, although simple 
identification of SDs in TEM would be indicative. In this 
support stands previous evidence of caveolae-presenting 
TCs undoubtfully being closed by SDs (Figure 5A in [74], 
Figure 1E in [75], Figure 2A in [76]). 
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