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Abstract 
The climate changes, which occurred during the last decades, put all living species in front of new challenges. Human biology is no exception 
to it, all tissues have to face new effects, with unpredictable consequences. Many cancers, mainly affecting the skin, but also many of the 
eye various structures diseases, have ultraviolet radiation as recognized causative agent. The aim of our work is to highlight the changes 
that can occur after exposure to ultraviolet radiations of soft tissues, including eye structures, by reviewing data from the scientific literature 
regarding the matter. Responsible for severe diseases, including cancer, ultraviolet negative effects on various soft tissues can be limited 
by better comprehension. Their knowledge can contribute to improving public health, by finding new preventive methods, which might 
represent the foundation of effective public health programs. 
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 Introduction 

Ultraviolet (UV) radiation is part of the electro-
magnetic spectrum emitted by the sun. UV spectrum is 
located between the X-ray and visible area, including 
electromagnetic radiation with wavelengths in the range 
100–400 nm. This spectrum is subdivided in three groups: 
UV-A, containing wavelength 400–320 nm, UV-B with 
wavelength between 320–280 nm, and UV-C with wave-
length ranging between 280–100 nm. Whereas UV-C 
rays (wavelengths of 100–280 nm) are absorbed by the 
atmospheric ozone, most radiation in the UV-A range and 
about 10% of the UV-B rays reach the Earth’s surface. The 
destruction of the ozone layer in the upper atmosphere 
has led to an increase in UV radiation reaching the Earth’s 
surface [1–4]. Exposure to solar radiation in the UV-B 
range can cause a wide range of negative consequences 
on living tissues of various species, such as sublethal 
effects on amphibians eggs and tadpoles, including reduced 
growth rates [5, 6], increased occurrence of develop-
mental mortalities [7], decreased locomotor performance 
[8] and altered behaviors [9, 10]. Exposure to UV-B 
radiation also synergistically enhances the negative effects 
of other stressors [11–16]. Sensitivity to UV-B radiation 
varies between species [14] and between populations, 
with populations at higher elevations considered to be at 
greater risk of UV-B associated damage than populations 
at lower elevations, because they receive higher levels 
of solar UV-B radiation [17]. 

 The effects of UV radiation on human 
and animal body 

Both UV-A and UV-B are of major importance to 
human health. Sunlight exposure presents some parti-
culars depending on altitude, particulars which become 
more effective especially in aeronautical activities. The 
sun generates a multivalent radiation, which is trans-
formed while crossing the atmosphere. The existence of 

the ozone, water steam and carbonic gas layers determines 
the different absorption of rays, depending upon the 
wavelength [18, 19]. 

Beside natural UV, humans are exposed to some 
artificial sources produced by fluorescent lamps in the 
voltaic arc welders, incandescent mercury vapor, UV 
lamps used for sterilization in surgery rooms or areas 
for small children and infants. 

Small amounts of UV are essential for the production 
of vitamin D in people, yet overexposure may result in 
acute and chronic health effects on the skin, eye and 
immune system becoming responsible for diseases like 
erythema, immunodeficiency and skin aging. 

Human exposure to solar UV radiation has important 
public health implications. Evidence of harm associated 
with overexposure to UV has been demonstrated in many 
studies. Skin cancer and malignant melanoma are among 
the most severe health effects, but a series of other health 
effects have been identified. The World Health Organi-
zation (WHO) reports provide a quantification of the global 
disease burden associated with UV. The information 
presented forms a knowledge base for the prevention of 
adverse effects of UV exposure that is achievable with 
known and accessible interventions. UV prevention focuses 
on protecting the skin and other organs from UV radiation. 

Under such circumstances, pointing out on the most 
recent and most important knowledge regarding the UV 
effects on soft tissues remains an interest topic. 

The acute effects of UV-A and UV-B exposure are 
both short-lived and reversible. These effects include mainly 
sunburn (or erythema) and tanning (or pigment darkening). 
The chronic effects of UV exposure can be much more 
serious, even life threatening, and include premature aging 
of the skin, suppression of the immune system, damage 
to the eyes, and skin cancer. 

Sunburn (or erythema) is redness of the skin, which 
is due to increased blood flow in the skin caused by 
dilatation of the superficial blood vessels in the dermis 
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because of exposure to UV radiation. High UV doses may 
also results in edema, pain, blistering, and peeling of the 
skin a few days following exposure. UV-B radiation is 
believed to be mainly responsible for sunburn as it is more 
erythmogenic by a factor of 1000, however since there 
is more UV-A radiation reaching the Earth’s surface, 
UV-A contributes 15–20% to the sunburn reaction in the 
summer months. Tanning results from an increase in the 
number of functions melanocytes (pigment cells) resulting 
in increased activity of the tyrosinase enzyme. Premature 
aging of the skin encompasses a number of clinical signs 
that reflect structural changes in the dermis, including 
dryness, wrinkles, accentuated skin furrows, sagging, loss 
of elasticity, and mottled pigmentation, and is the result 
of degenerative changes in elastin and collagen [20, 21]. 
The degenerative changes accumulate over time and are 
largely irreversible [21]. It is believed that as much as 
80% of premature aging of the skin may occur within 
the first 20 years of life. UV-A radiation has been found 
to be an important contributor to premature aging of the 
skin. Whereas UV-B is 1000 to 10 000 times more efficient 
than UV-A in terms of induction of sunburn and non-
melanoma skin cancer, respectively, with premature aging 
of the skin, UV-B radiation is only 20–50 times more 
efficient than UV-A [20]. 

UV-B exposure suppresses immune function in many 
vertebrate species, including fishes [22], mice [23], rats 
[24] and humans [25]. The mechanisms for this immuno-
suppressive effect vary from local damage or killing of 
important antigen-presenting cells in the skin [26] to 
stimulation of keratinocytes to release cytokines that 
induce systemic immune suppression [27] or, indirectly, 
through an increase in concentrations of corticosteroids 
(cortisol or corticosterone), important stress hormones 
that also have an immunosuppressive function [28]. 

 Cellular and molecular changes induced 
by UV radiation 

Early exposure to UV-B radiation decreases immune 
function later in life [29]. UV radiation induces a state of 
relative immunosuppression that prevents tumor rejection. 
This is mainly accomplished by interfering with the normal 
surveillance function of antigen-presenting Langerhans 
cells in the epidermis, which are responsible for T-
lymphocyte activation in response to foreign antigens 
[21]. The number of Langerhans cells and their charac-
teristics are altered from exposure to UV radiation while 
similar cells that are responsible for the selective induction 
of suppressor lymphocyte pathways are resistant to UV 
damage. This creates an imbalance in the local T-cell 
function and a shift from helper to suppressor pathways, 
which ultimately favors tumorigenesis and progression. 
Skin cancers are the most commonly occurring cancers 
in terms of incidence in the world. There are different 
types of skin cancer including the non-melanoma skin 
cancers, basal cell carcinoma (BCC) and squamous cell 
carcinoma (SCC), and melanoma. Exposure to UV 
radiation is thought to be an important factor in each of 
these cancers as it induces DNA damage, however the 
types of exposure necessary to cause the different types 
of skin cancer may vary. Solar UV-B is carcinogenic. 
Nucleotide excision repair (NER) counteracts the carcino-

genicity of UV-B by excising potentially mutagenic UV-B-
induced DNA lesions. UV can induce DNA damage through 
direct as well as mediated mechanisms. Mutagenic cyclo-
butane pyrimidine dimers (CPDs), 6–4 photoproducts, 
DNA strand breaks, and DNA cross-links are the direct 
consequences of UV-B action. If not repaired properly, 
this DNA damage can result in mutations in the genome, 
ultimately contributing to skin carcinogenesis [30]. On the 
contrary, UV-A rays are mostly responsible for DNA 
damage mediated by oxidative stress. However, both 
UV-A and UV-B have been shown to be responsible for 
photocarcinogenesis and photoimmunosuppression [31]. 

UV radiation induces less DNA damage and higher 
rate of apoptosis of damaged cells in darker skin than  
in lighter skin, a combination that results in a greatly 
reduced risk of carcinogenesis [32]. 

Another key mechanism, through which UV induce 
melanomagenesis, is the production of reactive oxygen 
species (ROS). UV induce a dose-dependent response 
by human melanocytes leading to production of H2O2 
[33, 34] decrease in catalase activity, and reduced heme 
oxygenase-1 (HO-1) expression [35–40]. Similarly, it has 
been established that there is a role of ROS in the cell 
damage caused by UV radiation [41, 42]. The vulnerability 
of melanocytes to oxidative stress can be explained  
by their greater ability to produce ROS compared with 
keratinocytes and fibroblasts due to melanin production 
[43]. In fact, the melanosome is thought to be the main 
source of the high levels of ROS observed either in 
melanocytes or in melanoma cells [44–49]. However, 
there are conflicting data in the literature on the pro-
oxidant and antioxidant effects exerted by melanin. Some 
studies showed that the levels of H2O2 after exposure to 
UV are inversely related to the amount of melanin, which 
would thus possess an antioxidant effect [38]. 

Despite this capacity for DNA repair, non-melanoma 
skin cancers and apparently normal sun-exposed skin 
contain huge numbers of mutations that are mostly 
attributable to unrepaired UV-B-induced DNA lesions. UV-A 
is about 20-times more abundant than UV-B in incident 
sunlight. It does cause some DNA damage but this does 
not fully account for its biological impact. The effects of 
solar UV-A are mediated by its interactions with cellular 
photosensitizers that generate ROS and induce oxidative 
stress. The proteome is a significant target for damage by 
UV-A-induced ROS. In cultured human cells, UV-A-induced 
oxidation of DNA repair proteins inhibits DNA repair [38]. 
For the non-melanoma skin cancers, cumulative sun expo-
sure is believed to be important, whereas for melanoma 
the intermittent exposure hypothesis has been postulated. 
This hypothesis proposes that infrequent intense exposure 
of unacclimatized skin to sunlight is related to the increa-
sing incidence of melanoma and is more important than 
chronic sun exposure [50]. The incidence of all types of 
skin cancer is increasing. The risks of skin carcinogenesis 
and melanomagenesis may be lowered through the modu-
lation of UV-activated cell signaling pathways and/or 
generation of oxidative stress [51, 52]. 

 The effects of UV radiation on the eye 

UV rays can also damage the eyes as more than 99% 
of UV radiation is absorbed by the front of the eyes, 
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causing to the anterior pole of the eye damages ranging 
from minor (pterygium) to serious photokeratitis. 

Corneal damage, cataracts, and macular degeneration 
are all possible chronic effects from UV exposure and can 
ultimately lead to blindness. 

Melanoma, a type of skin cancer, can also develop 
within the eye. Intraocular melanomas are the most common 
ocular malignancy in whites. These melanomas originate in 
the uveal melanocytes, which are found the iris, ciliary 
body, and choroids of the eye. Uveal melanoma is the 
most common primary tumor of the eye with an annual 
incidence of approximately two cases per million in 
southern European countries to eight cases in northern 
European countries [53]. 

Incidence increases with latitude in a highly significant 
manner [53]. Whether this association can be attributed 
to the exposure to sunlight of variable intensity or not, 
remains a matter of discussion [54–57]. 

Uveal melanoma shows a mutation pattern that is 
clearly distinct from cutaneous [58–62], mucosal [63] and 
conjunctival melanomas [64]. 

The mutations typically encountered in cutaneous and 
conjunctival melanomas, BRAF and NRAS, are rare in 
uveal melanomas that are characterized by mutations of 
the G-proteins GNAQ and GNA11 occurring in mutual 
exclusive manner in 85% of the cases [65, 66]. The 
mutation pattern observed by exome sequencing in 
cutaneous melanoma is clearly consistent with an etio-
logical role of sunlight exposure [67]. 

The cornea is the transparent and avascular structure, 
which allows the transmission of incident light to posterior 
ocular structures. It is a structure constantly exposed to 
a wide spectrum of radiation including UV light [68]. 
According to some studies, the adverse effects of UV 
radiation include corneal stromal thinning, keratoconus, 
corneal vascularization, fibrosis and keratosis [69, 70]. 

The best-known effect of acute exposure to UV radiation 
is photokeratitis, characterized by enhanced apoptosis and 
exfoliation of the corneal epithelium, the appearance of 
ulceration, inflammation and edema of the corneal stromal 
structure, giving a sensation of ocular discomfort. The 
irradiation of the anterior pole of the eye with UV caused 
significantly microscopic changes in all histological 
structures of the eye [71]. 

The first aspect observed by authors of the study was 
the irregular thickening and the distortion of irradiated 
corneas, mainly in center, where the spotlight was higher. 
Growth in the cornea thickness was determined mainly by 
the fluid swelling in stroma, which led further to fibrillar 
collagen disorganization at this level. Thus, collagen 
fibers appeared disrupted, occasionally broken and weakly 
stained. An accumulation of inflammatory cells and angio-
genesis blood vessels at the stroma level also contributed 
to the thickness of the cornea. In some places, the anterior 
epithelium of the cornea appeared detached by Bowman 
membrane, due to edema liquid storage between epithelium 
and its basement membrane. Superficial cells of the 
epithelium exhibited pseudo-keratinization, while inter-
mediate cells appeared polyhedral, with enlargement of 
intercellular spaces and desmosomes exhibition, extensive 
and deep necrotic areas, with lymphatic cells infiltration 
and overall denudation of Bowman membrane. In the 

same study, corneal stroma appeared strongly infiltrated 
with lymphatic and macrophages mononuclear cells, 
associated with a number of angiogenic vessels with a 
structured wall of CD34-positive cells placed on a basal 
membrane made of collagen IV. The authors also noted a 
close relationship between the intensity of inflammatory 
angiogenesis and vessel density [71]. 

Another study demonstrated that UV-C irradiation-
induced decreases in cell volume lead to Src/FAK (focal 
adhesion kinase) activation due to a rapid loss of K+ 
ions through membrane Kv channels. UV-C irradiation 
induced both size and volume shifts in human and rabbit 
corneal epithelial cells. UV-C irradiation-induced decrease 
of cell volume elicited activation of Src and FAK, 
characterized by increased phosphorylations of SrcY416, 
FAKY397, and FAKY925 [72–74]. 

The effects of UV corneal irradiation on the cornea also 
provided the start point for a therapy procedure: corneal 
cross-linking. Corneal cross-linking (CXL) with UV-A 
irradiation and riboflavin, introduced by Wollensak et al. 
(2003) has become an established treatment for arresting 
keratoconus progression. UV-A irradiation activates ribo-
flavin, a photosensitizer, leading to an increase in the 
linkage between corneal collagen fibrils, resulting in signi-
ficantly increased stiffness of the treated cornea [75]. 

Recently, it was speculated that CXL reduces the 
conductance and increases average tortuosity, which might 
result in decreased corneal permeability. Stewart et al. 
(2009) simulated physiological corneal ageing in a porcine 
eye model using methylglyoxal to induce non-enzymatic 
cross-linking. The authors found a significant reduction 
in the corneal permeability after non-enzymatic CXL [76, 
77]. 

The effect of CXL on corneal permeability when using 
riboflavin and UV-A is still under debate. Two previous 
studies, one from Stewart et al. [76] and one from our 
group [77], demonstrated significant decreases in corneal 
permeability in different animal models, ex vivo and in vivo. 
Until now, no human data about the impact of CXL on 
corneal permeability have been available. However, our 
present in vivo data in human subjects, together with the 
findings reported by Litvin et al. for living rabbits, do not 
support any clinically relevant negative effect of CXL 
on corneal permeability [78]. 

Sunlight exposure and UV-B exposure have been 
found to be associated with cortical cataract [79–81]. 

Regarding the UV radiation on the crystallin lens, UV 
light is believed to exert an impact on proteins and to 
induce damage on cells [82, 83]. Moreover, UV light 
exposure is considered to be one of the environmental 
factors involved in lens cataractogenesis during aging [84]. 
UV-C is a shortwave UV irradiation (λmax 254 nm) and 
belongs to the major wavelengths in the UV spectrum. 
UV-C irradiation is the most biologically damaging range 
of solar radiation [85]. Several researchers have reported 
that UV irradiation has an adverse impact on proteins, 
and several hypotheses accounting for the interaction(s) 
have put forth: involvement in the generation of free 
radicals or ROS, or modification of protein structures 
[86–88]. Certain studies undoubtedly highlighted the close 
association among disulfide bond cleavage/formation, 
intermolecular interactions, and the resultant formation 
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of aggregates of human γD-crystallin (HGDC) induced 
by UV-C irradiation [89]. 

The detailed interacting mechanisms, however, remain 
largely unknown. The conformational and functional 
consequences of UV-C irradiation have already been 
demonstrated for a variety of proteins, but not for HGDC 
[90, 91]. Human γD-crystallin is a principal protein com-
ponent of the human eye lens and associated with the 
development of juvenile and mature-onset cataracts. 
Exposure to UV light is thought to perturb protein structure 
and eventually lead to aggregation. 

Several previous studies have provided evidence that 
the structural and biochemical features of proteins can be 
affected by UV light. Exposure to UV irradiation could 
be correlated with the structural perturbation of proteins 
which might eventually lead to protein aggregation [92–
94]. Moreover, the photo-oxidation of proteins induced by 
light exposure can result in various kinds of modifications, 
such as cross-linkages [32], fragmentation of covalent 
bonds, and changes in different amino acids [95, 96]. 

The eye is a highly metabolically active structure, 
continually bathed in light. Thus, oxidative and particu-
larly photo-oxidative processes are critical factors in ocular 
pathological conditions, especially those associated with 
aging [97, 98]. 

In the eye, the vitreous gel is a compact, homogeneous, 
and clear body at birth. With aging, the vitreous gel can 
undergo progressive degeneration characterized by vitreous 
liquefaction and weakening of the vitreoretinal adhesion 
between the posterior vitreous hyaloid and the inner 
limiting membrane (ILM). In about 25–30% of the 
population, this degeneration may result in posterior 
vitreous detachment (PVD) [99, 100], increasing the risks 
of major diseases such as macular holes, epimacular 
membranes, vitreoretinal traction syndrome, and retinal 
detachment [101]. Since they may be sight-threatening 
conditions, there is growing interest in unveiling their 
pathogenic mechanisms [102]. In the literature, these 
processes have been speculated to be promoted by the 
same molecular mechanisms [103–105], but their under-
lying pathogenesis is still poorly understood: different 
factors are presumed to play a role and, among them, an 
increase in the production of free radicals [106, 107]. 
An imbalance between free radicals production and anti-
oxidant defenses may produce oxidative stress. Since the 
eye is continuously exposed to light, incident light may 
be a major factor that promotes the production of free 
radicals [108]. 

In addition to the photoprotection offered by some 
oxidative scavenger molecules of the eye, in physiologic 
conditions, ocular tissues such as the cornea and the lens 
filter harmful radiations of the visible spectrum, ensuring 
additional protection for the retina [109]. However, in 
pathological conditions where an aged lens is replaced with 
an implant, one of the main photoprotective tissues of 
the eye is lost. For this reason, intraocular lenses (IOLs) 
with transmittance properties similar to the human lens 
have been developed. Today, two main types of IOLs, 
differing in terms of light transmittance, are available: 
colorless UV-blocking IOLs and yellow-tinted IOLs. The 
first type effectively blocks UV light, but the transmission 
properties differ from those of the aged lens, which is more 

comparable to tinted lenses that block blue light [110, 
111]. Surprisingly, little is known about the influence 
these different types of lenses may have on the oxidative 
status of the vitreous. Current IOLs, even with UV absorber, 
do not ensure the same photoprotection offered by natural 
lenses affected by corticonuclear cataracts. Furthermore, 
a relevant correlation between the increased presence of 
peroxidation products in the vitreous and an evident PVD 
has been observed, but the nature of this relationship 
requires further study [112]. 

Since we found lipid peroxidation was higher in the 
vitreous of patients with lens implants, proving whether 
adequate photoprotection could effectively reduce the 
peroxidation products in the vitreous and the retina, thus 
avoiding sight-threatening complications, is an important 
question to be addressed in future studies. These will allow 
us to understand whether improving light filtering could 
be a possible method for effectively reducing oxidative 
stress in the eye. 

The severity of the damage depends upon the radiation 
intensity, duration of exposure, pigmentation degree of 
the retina. It also depends, upon the refraction state of 
the exposure eye-emmetropia or uncorrected ametropia; 
and upon the crystallin lens state. This kind of injury 
occurs seldom, after prolonged sunlight exposure, but 
more frequently after having watched a sun eclipse without 
adequate protection. Radiation burns most frequently are 
caused by UV rays exposure, in case of extended sunlight 
exposure. This radiation is almost entirely absorbed by the 
cornea, but a small amount is absorbed by the crystallin 
lens and some of it may also cross it, toward the retina. 

Same as the majority of the retina, the macular cells 
are particularly exposed to the release of “free radicals”, 
due to exposure to light and to the abundant presence of 
oxygen [113–116]. The latter are eliminated under normal 
circumstances but their accumulation may lead to toxic 
reactions [117, 118]. 

The lipid membranes of visual cells (cones and rods) 
are the main target of the newly created free radicals [119–
123]. However, numerous defense mechanisms exist 
normally in the retina [124]. Firstly, there is extremely 
rapid renewal of photoreceptive visual cells, particularly 
of their external segment and of the molecules of the discs 
of which they are comprised [125]. Combined with this 
is enzymatic restoration of the injured molecules [126]. 
Finally, the retina has its own defense mechanisms, based 
on the presence of the melanin. Melanin is a photon trap, 
capable of eliminating free radicals. 

However, it is gradually reduced with age, by 50% 
between the ages of 24 and 72 years [127]. The damage 
of macular cells leads to age-related maculopathy, also 
known as age-related macular degeneration (AMD), and 
other macular diseases [128, 129]. AMD is the leading 
cause of irreversible vision loss in people aged 65 and 
older in the western world. This increasing prevalence 
worldwide is largely attributable to increasing longevity 
and lifestyle changes associated with Western society. 

Although the pathogenesis of AMD remains poorly 
understood, there is now generally agreed that oxidative 
stress and cumulative blue light damage are of major 
importance in AMD development [117, 130]. 

The macular cells, as an important provider of vision, 
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are widely exposed to non-ionizing radiation generated 
by the sun, as a major factor in our environment. The 
specific sensitivity of the eye explains the fragility of 
the ocular tissue with regard to the thermo-luminous 
aggression that is responsible for the occurrence of various 
ophthalmologic injuries, specifically chorioretinal, and 
macular area is the most sensitive to photonic aggression. 
Amongst these pathologies, AMD is first and foremost 
and it is currently considered that this process can be 
accelerated or aggravated by prolonged exposure of the 
eye to the sun’s UV rays. 

Under the circumstances of a sunny environment, rich 
in UV radiation, correlated with the ozone layer destruction, 
the research regarding UV effects on living tissues becomes 
a necessity of public health. Understanding the deep 
mechanisms of negative effects generated by UV radiation 
on soft tissues in general, including eye tissues effects, 
may provide the key for prevention and for a better 
maintenance of a good, lifetime, ocular state of health. 

 Conclusions 

The exposure of various soft tissues to UV radiations 
generates many changes, mostly with damaging results. 
The eye structures are no exception to this phenomenon. 
Wide researches in the entire scientific world revealed 
the negative effects of UV exposure. Reviewing such 
knowledge is an opportunity to highlight the importance 
of UV radiations as causative agents in many cancers, 
most often affecting the skin but also the eye, and their 
contribution to various ocular diseases, which may involve 
all the components of the visual organ. Considering all 
data on the matter might lead in the future to public health 
prevention programs, effective enough to help living species 
face the new challenge of changing climate radiations. 
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