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Abstract 
The aim of this study is to make a foray in the world of constitutive elements of the architectural and functional organizing of the 
cardiomyocytes involved in cardiomyopathies and of the genetic molecules that they express. Primary cardiomyopathies represent a group 
of diseases characterized by primary structural and functional changes of the myocardium, without myocardial ischemic disease, hypertension, 
valvulopathies or congenital cardiac diseases being involved. In the pathogenesis of the cardiomyopathies proteins, especially from the 
sarcomere, Z-disc, cellular cytoskeleton, sarcolemma, intercalated discs, nuclear envelope and other constitutive proteins of the cardiomyocytes 
are involved. Deciphering of these pathophysiological mechanisms is part of the new model of personalized medicine, and it is useful in 
developing and in the optimization of new strategies for the management of the patients diagnosed with this type of disease. 
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 Introduction 

Primary cardiomyopathy is a primary disease of the 
cardiac muscle characterized by structural and functional 
myocardial anomalies, without coronary artery disease, 
hypertension, valvulopathy or various congenital heart 
diseases being involved [1, 2]. Primary cardiomyopathy 
is caused by intrinsic factors, by structural and functional 
alteration of the proteins included in the structure of the 
cardiomyocytes, and secondary cardiomyopathy is deter-
mined by extrinsic factors such as myocardial ischemia, 
hypertension and also other factors; the diagnostic steps 
in primary cardiomyopathy include, in the first place, the 
elimination of the factors that cause secondary cardio-
myopathy [3]. 

In general, in what cardiomyopathy is concerned, 
epidemiological data from the general population, are 
not fully known. Worldwide, it is being estimated a 
prevalence of all cardiomyopathies of at least 3% [4]. 
On the other hand, due to etiological complexity of this 
pathology and also due to the important advances in 
genetics from the last decades, the classification of this 
type of disease has suffered several changes among the 
years. In 2006, American Heart Association (AHA) 
classified primary cardiomyopathy in genetic (hyper-
trophic cardiomyopathy – HCM, arrhythmogenic right 
ventricular cardiomyopathy – ARVC, left ventricular 
noncompaction – LVNC, glycogen storage, conduction 
system disease, mitochondrial myopathies and ion channel 
disorders), mixed (dilated cardiomyopathies – DCM, 
restrictive cardiomyopathy – RCM, non-hypertrophied and 
non-dilated) and acquired (inflammatory – myocarditis, 

stress-provoked “tako-tsubo”, peripartum, tachycardia-
induced and infants of insulin-dependent diabetic mothers) 
[5]. In 2008, the European Society of Cardiology (ESC) 
adds to the phenotypic classification in HCM, DCM, 
RCM, LVNC and to the unclassified cardiomyopathy the 
family genetic subtypes and nonfamily/nongenetic subtypes 
[1]. The last classification belongs to the World Heart 
Federation (WHF). So, in 2013, WHF suggests MOGE(S) 
classification of the cardiomyopathy, classification that 
takes into account the morphofunctional phenotype (M), 
the involved organs, only the heart or other organs can 
also be involved (O), genetic or familial inheritance (G), 
etiology (E) and functional status (S) [2]. 

Deciphering the alteration of the genetic molecular 
changes that are involved in phenotypic presentation of 
cardiomyopathies outlined even more the concept of 
personalized medicine, which is firstly based on the 
patient and not on the disease [6]. 

The aim of this study is to structure the existing 
information about the constitutive elements of the archi-
tectural and functional organization of the cardiomyocytes 
involved in cardiomyopathy and genetic molecules which 
express them. 

 Changes of the proteins associated with 
sarcolemma and cellular cytoskeleton 

In the cardiomyocytes’ membrane, there are several 
protein complexes. 

Dystrophin is a protein linked to the cardiomyocyte’s 
membrane by the dystrophin glycoprotein complex, with 
the main function in binding cytoskeleton to the extra-
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cellular matrix [7]. It helps maintaining the stability  
of the cellular membrane during muscular contraction,  
it contributes to intracellular organization and to force 
transfunction, and it is codifies by a gene which is situated 
on the X chromosome [8]. Qualitative and quantitative 
alterations of the dystrophin lead to Duchenne and Becker 
muscular dystrophies that can be associated with cardio-
myopathy and driving disorders [8]. Dilated cardiomyo-
pathy is the main cause of morbidity and mortality in 
children suffering from muscular dystrophies, more than 
90% of those suffering from Duchenne muscular dystrophy 
develop this disease up to the age of 18 years old [8, 9]. 
Besides the treatment for heart failure and arrhythmia in 
patients with muscular dystrophies and cardiovascular 
disease, new molecular therapies are still in the experi-
mental stage, but they are promising [10]. An example is 
represented by the reprogramming of the human cardio-
myocytes in patients with Duchenne muscular dystrophy. 
So, generating pluripotent stem cells from the cardio-
myocytes of these patients, genetically corrected with an 
artificial chromosome, which contains the entire genomic 
sequence that codifies dystrophin, may have application 
in regenerative medicine for this type of cardiovascular 
dysfunction [11]. 

Spectrin is a protein which has been discovered for 
the first time in erythrocytes, and which has an important 
role in maintaining the stability, the structure and the shape 
of cellular membrane [12]. Spectrine has two α subunits 
and five β subunits [12]. αII-Spectrin splice variant 
(SH3i), exclusively localized at Z- and intercalated discs 
of cardiomyocytes, which is codified by SPTAN1 gene, 
localized in the region 9q34.11 [13], together with 
mammalian proteins of the Enabled (Mena) and with 
vasodilatator-stimulated phosphoprotein (VASP) form  
a complex which regulate cytoplasmic actin networks 
[14]. Disturbing this complex may cause dilated cardio-
myopathy and conduction abnormalities [14]. On the 
other hand, βII-Spectrin, which is codified by SPTB2 
gene [15], intervenes in the regulation of ankyrin-B and 
αII-Spectrin [16]. The dysfunction of this process may 
cause severe arrhythmia associated with aberrant calcium 
phenotypes and may also cause the progression of heart 
failure [16]. 

Cardiac ankyrin repeat protein (CARP) or ankyrin repeat 
domain 1 (ANKRD1), which is codified by ANKRD1 gene, 
located on chromosome 10 [17], is involved in cardio-
myogenesis, is an important factor in the mechanical 
transduction system in the sarcomeric I-band, and it is 
linked to titin, myopalladin and also other structures [18]. 
Moreover, this protein is also found in the nucleum, 
where it participates as a transcription cofactor for Y-box 
transcription factor 1 (YB-1) [18]. In 2009, Moulik et al. 
showed that ANKRD1, which codifies cardiac ankyrin 
repeat protein, is a new gene involved in dilated cardio-
myopathy, about 2% of the patients with familial or 
idiopathic dilated cardiomyopathy, included in their study, 
had mutations of this gene [19]. Structural alterations  
of this protein also lead to hypertrophic cardiomyopathy 
[20, 21]. On the other hand, in terms of a cardiac 
hypertrophy caused by pressure overload and continuous 
isoproterenol infusion, via the role of regulator of trans-
forming growth factor-β (TGFβ) and of mitogen-activated 

protein kinase (MAPK), CARP may reduce cardiac fibrosis 
and hypertrophy [22]. 

Desmin is a protein codified by DES gene, which is 
located on chromosome 2q35 [23], a type III intermediate 
filament (IF) protein, expressed in abundance in the cells 
of the smooth and striated muscle tissue [24, 25]. Normally, 
it interacts with other with other structural proteins found 
in cardiomyocytes, proteins such as desmoplakin, myo-
spryn, ankyrin, αβ-crystallin and others. It has an impor-
tant role in the formation of a network, which links the 
contractile elements with different elements such as inter-
calated discs and costameres, nucleus, mitochondrias, 
sarcoplasmic reticulum and lysosomes [26]. Desmin’s 
structural and functional alterations were involved in 
DCM, RCM, HCM and ARVC [23, 26–28]. A recent 
study shows that in desmin-deficient (DES-KO) mice, 
the treatment with cardiac specific adeno-associated virus 
(AAV), serotype 9, which can transfer the genetic infor-
mation of wild-type (WT) DES-cDNA, may cause a 
partial reconstruction of desmin and may also improve 
the morphological and functional cardiac parameters at 
these mice [24]. 

The four and a half LIM (a protein structural domain 
named after the proteins initial discovered Lin11, Isl-1 
and Mec-3) domains protein 1 (Fhl 1) participates in 
establishing a bond between cytoskeleton and the nucleus 
[29]. This protein is codified by Fhl1 gene, which is located 
on the chromosome Xq26.3 [30]. The mutation of this gene 
may cause different myopathies and also hypertrophic 
cardiomyopathy [29, 31, 32]. In a recent study, San Román 
et al. showed that in Emery-Dreifuss muscular dystrophy 
(EDMD) coexist unclassifiable arrhythmic cardiomyo-
pathy and a possible cause is the mutation of Fhl1 gene 
[33]. 

 Changes of the proteins associated with 
sarcomere 

β-Myosin heavy chain is a thick filament from the 
sarcomere, being a part from IInd myosin’s class, and  
it is codified by MYH7 gene located on chromosome 
14q11.2 [34]. The mutation of the gene that codifies this 
protein with contractile role was among the first discovered 
as being involved in the pathogenesis of hypertrophic 
cardiomyopathy [34, 35]. Recent studies showed that this 
gene’s mutations are also involved in the pathogenesis 
of dilated cardiomyopathy and left ventricular noncom-
paction cardiomyopathy [36–38]. 

Ventricular or cardiac myosin light chain-2 is a protein 
involved in cardiac contractility modulation due to the 
phosphorylation at serine 19, and it is encoded by MYL2 
gene located on chromosome 12q23-q24 [34, 39]. The 
phosphorylation of ventricular myosin light chain-2 made 
by cardiac myosin light chain kinase (cMLCK) rises 
Ca2+ sensitivity to sarcomere’s shortening, which is an 
important thing in the normal cardiac performance [40]. 
Mutation of cardiac myosin regulatory light chain caused 
hypertrophic cardiomyopathy [41–43]. On the other hand, 
replacing aspartic acid in 94 position with alanine (D94A) 
represents a new mutation in the myosin regulatory light 
chain, that is involved in the occurrence of dilated cardio-
myopathy [44]. 

Essential myosin light chain is a thick filament protein 
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from the sarcomere, codified by gene MYL3 that is located 
on chromosome 3p21.3, with role in modulating cardiac 
contractility, but it is very poorly understood at present 
[45]. Mutations of this protein are involved in the patho-
genesis of hypertrophic cardiomyopathy [41, 46–49]. 

Troponin is a protein complex formed by three 
subunits with role in cardiac muscle and skeletal muscle 
contractility. The genes that codify the troponin’s three 
subunits are: for Troponin I gene TNNI3 located on 
chromosome 19q13.4, for Troponin T gene TNNT2 located 
on chromosome 1q32, and for Troponin C gene TNNC1 
located on chromosome 3 [34, 50, 51]. By the augmentation 
of the cardiomyocytes’ affinity for Ca2+ during muscular 
contraction caused by mutations of the TNNC1 gene a 
pathophysiological mechanism, that is involved in hyper-
trophic cardiomyopathy, is formed [52–54]. However, rare 
variants of TNNC1’s mutation may be involved in the 
pathogenesis of dilated cardiomyopathy by decreasing 
Ca2+ sensitivity of force development and by decreasing 
the effects of the phosphorylation by protein kinase A 
(PKA) [55]. Also, by changing Ca2+ sensitivity of force 
production, TNNI3’s mutations can determine HCM, DCM 
and RCM [56–60]. Nevertheless, TNNT2’s mutations can 
determine HCM and DCM [61–63]. However, by induc-
ting pluripotent stem cells (iPSCs) derived from patients 
suffering from dilated cardiomyopathy, who had a muta-
tion of TNNT2 gene (R173W), it was observed that the 
treatment with β-adrenergic blockers or the overexpression 
of sarcoplasmic reticulum Ca2+ adenosine triphosphatase 
improves the function of these cells [64]. 

 Changes in proteins associated with Z-
discs 

LIM and also PZD (postsynaptic density 95, discs large 
and zonula occludens-1) domains contain two important 
protein subfamilies: actin-associated LIM protein (ALP) 
and Enigma, with structural and functional role in myo-
cardium, in striated muscle and also in other organs [65]. 
APL subfamily has four proteins: α-actinin-associated LIM 
protein (ALP), 36-kD C-terminal LIM domain protein 
(CLP 36), reversion-induce LIM domain protein (RIL) 
and Mystique protein, while Enigma subfamily has three 
members: Enigma, enigma homolog protein (ENH) and 
Z-disc associated, alternatively spliced, PDZ motif-con-
taining protein (ZASP)/Cypter [65, 66]. Although both 
protein subfamilies are expressed in the heart, only ALP, 
ENH and Cypher/ZASP have specific cardiac functions 
[65]. It was demonstrated that alpha-actinin-2 protein, 
codified by ACTN2 gene, situated on the chromosome 1, 
is implicated in the pathophysiology of DCM [67, 68]. 
Recent studies showed via next generation sequencing 
method (NGS) and also via other methods that structural 
and functional changes in alpha-actinin-2 (ACTN2) may 
cause mid-apical HCM, left ventricular non-compaction, 
arrhythmogenic abnormalities and sudden death [69–
71]. Cypter/ZASP protein is important because it 
interacts with α-actinin-2 and other proteins associated 
with Z-disc in maintaining the structural integrity of this 
disc [72, 73], its structural and functional alteration may 
cause dilated cardiomyopathy and left ventricular non-
compaction [74]. ALP, codified by PDMLIM3 gene, 

which is located on chromosome 4, may be involved in 
HCM [75, 76]. In what CLP 26 is concerned, a recent 
study showed that autophagic as a response to myocardial 
ischemic-reperfusion injury protects cardiomyocytes via 
CLP36 clearance [76]. So, in cardiomyocytes without 
ubiquitin-activating E1-like enzyme (ATG7), an auto-
phagy-related protein, by accumulating CLP36, the 
response to myocardial ischemia-reperfusion injury is 
represented by cardiac hypertrophy, severe cardiac fibrosis, 
contractile dysfunction and myofibrillar disarray; however, 
these discoveries need new confirmations in the future 
[76]. The other proteins of LIM/PDZ domain did not prove 
until the moment to be involved in the pathogenesis of 
the cardiomyopathy. 

Myopalladin, a protein codified by MYPN gene, which 
is located on chromosome 10q21.3, is part of the Z-disc’s 
proteins and interact with actinin-2, nebulette, CARP 
nuclear factor and also with other protein structures, its 
main role is realizing the bond between the sarcomere and 
the core of cardiomyocytes [77, 78]. MYPN mutations 
were identified, in a percentage of 1.66%, in patients who 
developed DCM, HCM and RCM [79]. By fragmentation 
of nebulette-α-actinin domain of myopalladin (MYPN-
Q529X) a mouse model for this protein was created via 
gene targeting; and it was observed that an activator of 
the fibroblasts (CTGF) is augmented by reducing the 
phosphorylation of extracellular signal-regulated kinases 
(ERK1/2), so interstitial and perivascular fibrosis is aug-
mented, finally leading to restrictive cardiomyopathy [80]. 
Moreover, these proteins may become specific therapeutic 
targets in RCM [81, 82]. 

Telethonin or tinin cap (Tcap) is a protein codified 
by TCAP gene, which is situated on chromosome 17, and 
it has a main role in a complex made by muscle LIM 
proteins (MLP) in the Z-disc, but by binding to specific 
ion channels, it also has other roles [83–87]. Structural 
and functional changes of telethonin may cause DCM 
and HCM [88, 89]. 

Delta-sarcoglycan, which is a part of the dystrophin-
glycoprotein complex, codified by a gene located on the 
chromosome 5q33, is also involved in structural changes 
that may lead to cardiomyopathy [50, 90]. In experimental 
models, mice, which suffered a mutation of the gene that 
codifies delta-sarcoglycan, developed cardiomyopathy, 
but gene therapy by transferring the information which 
codifies this protein via adeno-associated virus (AAV) 
improved the cardiac function [91, 92]. 

Vinculin, a protein codified by Vcl gene located on 
10q22.1-q23 [50], forms together with zonula occludens-1 
(ZO-1 or TJP1) the bound between the actin network and 
the cellular membrane by linking integrin and cadherin-
based cellular junctions and connexin-43 (Cx43 or GJA1) 
[93, 94]. Vcl deletion in mice (cVclKO) caused in six or 
seven weeks cardiomyopathy [95]. This thing is possible 
because Vcl deletion causes both the reduction of mRNA 
and the quantitative deficit of this protein and also the 
expression of Cx43, ZO-1, β1D-integrin and talin, while 
the activity of phosphoinositide 3-kinase (PI3K) is reduced 
and the activity of protein kinase B (Akt) and extracellular 
signal-regulated kinases (Erk1/2) is increased [93]. 

Cysteine and glycine rich protein 3 (CSRP3) or muscle 
LIM protein (MLP), encoded by CSRP3 gene, which is 
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located on 11p15.1 [50], is a structure that has a role in 
maintaining the stability of Z-disc via the interaction with 
telethonin, α-actinin and calcineurin, in costameres by 
binding to zyxin, integrin linked kinase (ILK) and β1-
spectrin, in intercalated discs via the association with 
nebulin and in the core via the bound with transcription 
factors such as MyoD, myogenin and herculin or myogenic 
factor 6 [96]. The changes of this cardiomyocyte structure 
cause hypertrophic or dilated cardiomyopathy [97–101]. 

 Changes in proteins associated with the 
nuclear membrane 

Lamin A codified by LMNA gene located on chromo-
some 1q21, also known as Class V intermediate filaments, 
is a protein structure localized on the internal part of the 
core’s membrane, with a role in maintaining the structural 
integrity and mechanical stability [102]. Mutations of this 
protein may cause dilated cardiomyopathy by abnormal 
growth of mitogen-activated protein kinase 1/2 and if 
this pathway is blocked by using a specific inhibitor and 
an angiotensin II converting enzyme (ACE) is adminis-
trated an attenuation of this pathology is being observed 
[103]. 

Another protein of the nuclear envelope is emerin. It 
is codified by EMD gene, located on chromosome Xq28 
[51]. Until now, over 200 mutations of this protein were 
discovered, mutations which may cause X-linked Emery-
Dreifuss muscular dystrophy (EDMD) and also dilated 
cardiomyopathy, because the emerin in very important 
in correcting the cardiac function [104–106]. A recent 
study, in which emerin’s functions in the embryo’s heart 
and in the postnatal mice’s heart were analyzed, showed 
that the depletion of this protein by shRNA causes the 
activation of Wnt/β-catenin pathway with role in cellular 
proliferation, cardiac remodeling and decreasing the number 
of multinucleated cells [107]. Therapeutic inhibition of this 
intracellular signalizing pathway caused by emerin’s 
mutations may be beneficial for patients suffering from 
X-EDMD [107]. 

 Changes in the proteins associated with 
intercalated discs 

Changes in the proteins included in the structure of 
intercalated discs are involved especially in the patho-
genesis of arrhythmogenic right ventricle cardiomyopathy 
(ARVC). So, α-T-catenin, which links plakophilin and 
forms area composita with an important role in cell–cell 
adhesion in cardiomyocytes’ contractions, may be modi-
fied by the mutations of the gene that codifies CTNNA3, 
localized on chromosome 10q21 [108]. Plakophilin-2 is 
a protein codified by PKP-2 gene from the chromosome 
12p11.21, that is implicated in about 7 to 51% of the cases 
of ARCV with autosomal dominant inheritance pattern 
[109]. Plakoglobin, codified by JUP gene, which is loca-
lized on chromosome 17q21.2, i.e., another desmosomes 
structural protein with intervenes in the pathogenesis of 
the arrhythmogenic cardiomyopathy [110–112]. Also, in 
the pathogenesis of this type of cardiomyopathy are 
involved desmocollin-2, which is codified by DSC2 
gene located on chromosome 18q12.1, desmoglein-2, 
codified by DSG2 located on chromosome 18q12.1 and 

desmoplakin codified by DSP protein localized on 
chromosome 6p24.3 [111–116]. 

But in cardiomyopathies’ pathogenesis may also be 
involved other proteins such as phospholamban, that is 
codified by PLN gene from the chromosome 6q22.3, 
calsequestrin, codified by CASQ2 gene from the chro-
mosome 1p13.1, junstophilin 2, codified by JPH2 gene 
from the chromosome 20q13.12, but also many other 
proteins, whose role in the pathogenesis of the cardio-
myopathies, until now, is not clearly established [34]. 

 Conclusions 

In the pathogenesis of the cardiomyopathies proteins, 
especially from the sarcomere, Z-disc, cytoskeleton, sarco-
lemma, intercalated discs, nuclear envelope and other 
constitutive proteins of the cardiomyocytes are involved. 
Deciphering the complex genetic molecular mechanisms, 
which may cause the structural and functional alterations 
in cardiomyopathies is useful in developing and in the 
optimization of new strategies for the management of the 
patients diagnosed with this type of disease. Moreover, 
it is included in the new model of personalized medicine, 
where the diagnostic and therapeutic steps are specific 
to each patient. But, there are still many unknowns in the 
pathogenesis of the inherited cardiomyopathies. 
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