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Abstract 
For more than 130 years, the hepatic stellate cells (also known as Ito cells) have been the object of numerous studies that aimed at their 
characterization both in normal and postlesional status, where they play a key role in fibrosis progression specific for chronic hepatic pathology. 
Converged studies on their histophysiology have revealed other functions, namely the involvement in liver embryological development and 
regeneration, metabolisms regulation, modulation of local inflammatory and immune reactions. Ito cells plasticity is surprising, as they are 
able to provide the connection between the complex sinusoidal and parenchymal microenvironment, influencing by autocrine and paracrine 
mechanisms the extracellular matrix content in tight correlation to growth and repair necessities. Last but not least, Ito cells take an active 
part in systemic homeostasis maintenance by their capacity to store and mobilize vitamin A, respectively. The evolving interest in their 
research will be undoubtedly followed by a better knowledge of the physiopathological sequences responsible for liver diseases, as new 
targets for the development of new therapeutic approaches directed toward improvement of prognosis and patients’ quality of life. 
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 Introduction 

Star-shape liver cells have been firstly described in 
1876 by Kupffer, who was using gold chloride for 
morphological study of the liver, and identified in 
sinusoids a cellular type containing cytoplasmic vitamin 
A storage, which he named “sternzellen”, according to 
their cellular shape [1]. 

However, the initial method of identification used by 
Kupffer did not achieve the accurate differentiation of 
star-shape cells from the macrophage-type cells residents 
in liver parenchyma, so microscopic studies have been 
further continued. Thus, in 1951, Ito published his own 
results regarding the liver sinusoidal cell population, 
describing it in association to macrophages (Kupffer cells) 
as a cellular line capable to store lipids in cytoplasm and 
correspondently naming it “fat-storing cells” [2]. Later, 
in order to reflect their role in lipids and vitamin A 
storage, Bronfenmajer et al. had proposed the name 
“lipocytes” [3, 4]. Therefore, since 1876, these cells are 
referred to by using a large variety of names, as follows: 
hepatic stellate cells (HSCs), perisinusoidal cells, Ito cells, 
lipocytes, parasinusoidal cells, or fat-storing cells [5–7]. 

The history of the HSC can be compared to Cinderella’s 
story... Due to its morphology difficult to identify by 
usual light microscopy techniques, the Ito cell was, and, 
somehow, remains hidden among the other cells in the 
hepatic parenchyma – just like Cinderella, treated by her 
family as a maid. Nevertheless, this cell can transform 
itself by the capacity of developing supplementary 
functions, in normal status or depending on the associated 
pathological conditions (Figure 1). This metamorphosis 

granting the HSC an important position in the pathogenesis 
of liver diseases is therefore similar to Cinderella’s change 
to a princess. 

 Structure and ultrastructure of hepatic 
stellate cells 

The embryological origin of HSCs is still a matter of 
interest. Despite the evidences of surface markers belonging 
to the three embryonic layers, current data have favored 
a double origin, mesodermal (from septum transversum) 
and endodermal, respectively [8–10]. 

Initially, the presence of glial markers on the surface 
of HSC has initially supported the hypothesis of ectodermal 
origin, which has been quickly infirmed by experimental 
studies [11]. Following continuous and thorough researches 
on human embryos, CD34 and cytokeratin 7/8 have been 
identified, which support the endodermal origin [12]. On 
the other hand, studies have demonstrated the expression 
of mesoderm transcriptional factor Foxf1, in an analogous 
manner to cells originating in the mesenchyme of septum 
transversum [13]. These first observations are also 
supported by recent experimental results, which have 
confirmed the septum transversum origin – specifically 
from a multipotent mesenchymal cell – not only of liver 
stellate cells, but also of perivascular mesenchymal cells, 
portal fibroblasts, smooth muscular fibers from central 
vein [9], and other cellular types like chondroblasts, 
osteoblasts, or adipoblasts [4]. 

In physiological status, HSCs are located in Disse 
subendothelial space (Figure 2), representing approxi-
mately 5–8% of the whole liver cell population and one 
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third of non-parenchymal cells [10, 14, 15]. A light 
concentration around the terminal vein has been ascertained, 

without any known functional significance related to this 
location [3, 5]. 

 
Figure 1 – Multifaceted role of the hepatic stellate cell. 

 
Figure 2 – Hepatic stellate cell location in liver parenchyma. 

Ultrastructurally, HSC has a stellate cellular body due 
to extension of numerous cytoplasmic processes, an oval 
or ellipsoidal nucleus, moderately developed RER, reduced 
perinuclear Golgi complex, and variable cytoplasmic 
deposits of vitamin A [16]. The subendothelial cytoplasmic 
extensions are disposed in a perisinusoidal location, 
between endothelium and hepatocytes [17]. On the surface 
of these cellular prominences, there are numerous spine 
microprojections involved in reception of chemotactic 
signals able to induce the stimulation of HSC contractile 
system [18]. The close contact with sinusoids, on one 
hand, and hepatocytes, on the other hand, supports the 
theory of mediators or cytokines transport facilitation 
role of HSCs [5]. Moreover, the direct contact with free 
nerve endings sustains the expression of neurotrophin 

receptors on their cellular surface and/or their neuro-
endocrine activity [19–21]. 

 Hepatic stellate cells functions 

Developmental and liver regeneration function 

The tight structural association between HSCs, endo-
thelial cells and hepatocytes suggested the idea that they 
may intervene in modulation, growth, differentiation, or 
morphogenesis of all the other parenchymal cells. During 
angiogenesis, the direct interaction between pericytes 
and endothelial cells is an essential process which leads 
to the maturation of vascular morphological elements 
[22]. According to the most widespread data, based on 
thorough studies of liver embryology, HSCs are nowadays 
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considered as playing the role of the pericytes, with major 
impact on vasculature development [10, 23]. In support of 
this theory come also the results of an experimental study, 
which demonstrated that lack of β-catenin in mouse liver 
mesenchyme leads to highly activated HSCs and induction 
of dilated sinusoids development [24]. Nevertheless, recent 
evidences point out the role of HSCs in the differentiation 
of hepatocytes, by their capability to induce synthesis of 
extracellular matrix components [25], and in the develop-
ment of intralobular biliary ducts [10]. 

Researches on liver histophysiology have demonstrated 
that HSCs may be also involved in normal liver hemato-
poiesis during intrauterine life, as they express on their 
SDF1α (surface stromal cell-derived factor 1α) or CXCL12, 
a powerful chemotactic factor for hematopoietic stem cells 
[26, 27]. 

All these data will certainly fundament future studies 
regarding the elaboration of more efficient specific 
protocols in hepatocytes cultivation (in vitro studies) 
based on stem cells, with potential major impact on liver 
transplant and successful therapies in acute and chronic 
liver diseases. 

The liver regeneration capacity is well recognized, 
beginning with the first observations in experimental 
partial hepatectomy [28]. In these circumstances, liver 
regeneration is achieved by remnant hepatocytes and is 
taking place in the absence of necrosis or inflammation 
[28]. If hepatocyte division fails, it seems that liver 
regeneration is supported by the involvement of other 
types of cells, which mediate liver progenitor cells acti-
vation [28, 29]. The HSCs support the process of liver 
regeneration by direct secretion of a great variety of 
cytokines, or by remodeling extracellular matrix compo-
nents [10, 30]. The hepatic regeneration process has 
finely regulated steps, which are naturally ending by the 
achievement of a specific cellular mass correspondent to 
the liver [31]. 

Unfortunately, the complete portrayal of HSCs invol-
vement in liver regeneration might be achieved only in 
experimental models characterized by their total ablation 
– an ideal condition that is still unachievable. Moreover, 
the complexity of human liver microenvironment cannot 
be entirely replicated in experimental conditions. 

Vitamin A storage 

In normal functional status, 50–80% of vitamin A is 
stored in liver, 80–90% of it being in fact deposited as 
cytoplasmic droplets in HSCs [32, 33]. Electron micro-
scopy distinguished two types of vitamin A lipid droplets 
in HSCs cytoplasm. Type I have various sizes, but not 
more than 2 μm in diameter and are packaged by a peri-
pheral membrane, while type II are much larger (up to 
8 μm) and devoid of peripheral membrane [10]. The 
relationship between the two types of vitamin A droplets 
is partially known, with opinions that support type II 
formation due to fusion of more type I droplets [34],  
or that type II might represent a precursor for type I 
vitamin droplets [35, 36]. 

Exogenous vitamin A is absorbed in the intestines and 
is transported to the liver by chylomicrons, where after 
uptake by hepatocytes is transferred to HSCs for storage, 
only small quantities being kept into hepatocytes [37]. 

Biochemically, HSCs cytoplasmic droplets contain 
as main components retinyl esters, and predominantly 
retinyl palmitate, but also small amounts of triglycerides, 
phospholipids, cholesterol, and free fatty acids [38]. 

Consequently to postlesional activation, HSCs achieve 
a series of ultrastructural changes consisting in loss of 
cytoplasmic vitamin A storage associated to significant 
rough endoplasmic reticulum (RER) and Golgi develop-
ment, which would support an enhanced collagen synthesis 
characteristic for activated HSC or hepatic myofibroblast-
like cells [39, 40]. 

Initial observations revealed that these ultrastructural 
modifications are the base of the cascaded events that 
result in fibrous tissue deposition in liver parenchyma. 
Therefore, the study on HSCs properties has been 
largely extended, with an increased focus on genes and 
mediators, which coordinate these events and, conse-
quently, on new therapies for hepatic chronic diseases 
associated to variable degrees of fibrosis. 

In this respect, a new hypothesis submits the idea of 
a common process of HSCs dedifferentiation and adipo-
cytes and preadipocytes dedifferentiation into fibroblasts 
[41]. Thus, besides both adipocytes and HSCs being lipid 
storage cells, additionally, HSCs express collagen type IV 
and adipocytes specific genes, as adiponectin and adipsin 
[42, 43]. Based on these common features, a similar 
mechanism of liver lipocytes regulation and of adipocytes 
differentiation coordinated by PPARγ (peroxisome proli-
ferator-activated receptor gamma) acting as adipogenic 
transcription factor has been suggested [44]. PPARγ 
promotes lipids intracellular storage, including that of 
retinyl esters in liver HSCs, concomitantly suppressing 
the activity of genes involved in collagen type I synthesis 
and, as a consequence, one of the factors whose therapeutic 
control might prevent liver fibrillogenesis [45, 46]. 

Recent data have shown that once activated, HSCs 
lose their cytoplasmic vitamin A and are capable of its 
conversion into retinoic acid, using alcohol dehydroge-
nases, specifically retinaldehyde dehydrogenases [47]. 
Retinoic acid mediates the interaction between HSCs 
and NK (natural killer) cells, both in alcoholic liver and 
in infections with liver tropism [47]. 

Inflammatory function: secretion of cytokines 
and fibrillogenesis 

One of the most surprising functions is that of invol-
vement in the modulation of liver inflammatory reactions, 
as HSCs are able to amplify the local response and the 
infiltration of parenchyma by mononuclear cells, and also 
by neutrophils, as in alcoholic hepatopathy [48]. 

So far, a large variety of cytokines secreted by HSCs 
has been identified, their list being most probably still 
incomplete [5]. 

Among these, PGF2α (prostaglandin F2α) and PGD2 
(prostaglandin D2), or PGE2 (prostaglandin E2), are 
involved in hepatic metabolism and in local inflammatory 
processes, possibly supplemented by leukotrienes C4 and 
B4, whose complete activity is yet incompletely deciphered 
[5]. Local postlesional neutrophilic inflammation is ampli-
fied as result of HSCs action, as they are able to secrete 
PAF (platelet activating factor), which facilitates chemo-
taxis and stimulation of neutrophil granulocytes [49]. 
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After their activation, HSCs are capable to synthetize  
a large spectrum of chemokines, as following: CCL21 
(chemokine C-C motif ligand 21), MCP-1 (monocyte 
chemotactic peptide-1), CCR5 (C-C chemokine receptor 
type 5), and RANTES (regulated on activation normal 
T-cell expressed and secreted) [5]. These substances are 
involved in variable immunomodulatory processes. 

HSCs synthetize TGF-α (transforming growth factor α), 
TGF-β (transforming growth factor β) and EGF (epidermal 
growth factor), important growth factors involved in their 
own proliferation and that of the hepatocytes as well in 
an autocrine manner, a process finely regulated by PDGF 
(platelet-derived growth factor) [50, 51]. TGF-β, well 
known as the effective hepatic anti-proliferative factor 
produced by activated HSCs [52], has a major impact in 
liver fibrillogenic cascade. On the other hand, HGF 
(hepatocyte growth factor) is currently considered the 
most powerful hepatic mitogen factor delivered by HSCs 
[5]. HSCs may balance HGF stimulatory action toward 
liver regeneration, demonstrating the capacity to coordinate 
the type of cytokines secretion according to the require-
ments of this process. 

Lately, CTGF (connective tissue growth factor) or 
CCN2, a cytokine with collagen synthesis promoter activity 
even in lung and kidney [53] has been added to the list 
of factors involved in liver fibrillogenesis – activated 
HSCs being one of its principal sources of secretion, 
beside hepatocytes. Apoptotic bodies formed after hepato-
cytes injury induce Kupffer and HSCs activation and the 
latter conversion to myofibroblasts [54]. Once stimulated, 
HSCs express on their surface a series of adhesion 
molecules and act as local APCs (antigen presenting 
cells), being able to stimulate T and NK cells activity 
[55, 56], achieving a pathological chain of hepatocytes 
necrosis/apoptosis perpetuation, and continuous extra-
cellular matrix collagen deposition [57]. Myofibroblasts 
also possess contractile ability, as they express α-smooth 
muscle actin (α-SMA) [58]. 

Conversely, deactivation of HSCs induces collagen 
deposition arrest and facilitates extracellular matrix 
regression [39, 59, 60]. Procollagen type III deposition, 
followed by that of collagen type I and IV are early 
events in hepatic lesions, a process balanced by MMPs 
(matrix metalloproteinases) activation. MMPs are involved 
in collagen degradation, in order to maintain the extra-
cellular matrix stability [61]. Simultaneously, MMPs 
inhibitors become expressed, as another reaction meant 
to maintain the hepatic extracellular matrix composition 
[62]. Matrix collagen degradation also depends on genic 
signals, which influence myofibroblasts apoptosis (by anti-
apoptotic genes) and inactivation of HSCs (by PPARγ 
gene) – effects balances by MMPs activity [63]. 

It is worth to mention that other mechanisms are 
contributing to local fibrillogenesis activation, such as the 
increase of antiapoptotic factors expression (particularly 
Bcl-2), supporting the lesional hepatocytes survival and, 
therefore, perpetuating the activation of HSCs and conse-
quent collagen deposition [61]. 

Despite their important involvement in fibrillogenesis, 
HSCs are not the only structures responsible of collagen 
synthesis in liver parenchyma, as other types of cells are 
performing the same function – such as portal fibroblasts, 
mesenchymal cells, and local fibrocytes [64]. 

Relationship with the immune cells 

HSCs spectrum of activities oriented toward main-
taining the immune homeostasis in liver parenchyma is 
highly variable. Indisputable proofs have already certified 
HSCs capacity to modulate the activity of T and B cells 
and, furthermore, their capability to act as APCs has been 
also tested [65–67]. 

Complex experimental studies have demonstrated the 
involvement of activated HSCs in liver T-lymphocytes 
recruitment and apoptosis induction, a role mediated by 
PD-L1 (programmed death-ligand 1), a transmembrane 
protein with immunosuppressive function [68, 69]. The 
expression of this molecule is stimulated by IFN-γ 
(interferon γ) and, conversely, PD-L1 blocking is asso-
ciated with the reduction of HSCs immunomodulatory 
activity, both in humans and mice [69–71]. 

Studies on liver immunopathology have demonstrated 
that CD8+ cells exert an enhanced fibrillogenic activity 
via HSCs when compared to CD4+ cells, partially 
supporting the high level of fibrosis noticed in patients 
presenting both hepatitis C virus (HCV) and human 
immunodeficiency virus (HIV), whose CD4+/CD8+ cells 
rate is reduced compared to patients only with HCV [51]. 

HSCs receive, in turn, numerous signals from immune 
cells [NK cells, CD56(+) T-cells, or γδ T-cells] located 
in the sinusoid capillaries. These cells are able to produce 
a series of mediators, which stimulate HSCs activity. One 
of the most important HSCs activation pathways includes 
the intervention of nuclear factor κB (NF-κB), able to 
stimulate Toll-like receptor 4 (TRL4) or P2Y receptor 
activation [72]. Secondary to activation, HSCs produce 
pro-inflammatory cytokines, chemokines, or ROS (reactive 
oxygen species), or may act as APCs [73]. 

There are only few reports regarding the relationship 
between B-lymphocytes and HSCs in hepatic micro-
environment. These results support the correlation between 
HSCs number, plasma cells number, and severity/degree 
of fibrosis in autoimmune hepatitis [74] and also the 
association between HSCs – plasma cells location and 
reduction of HSCs number in patients showing a favorable 
therapeutic response [75]. The intimate mechanism of 
interaction between these two types of cells has been 
recently demonstrated, also involving the direct inter-
vention of PD-L1 [76]. 

The new perspective of HCS intervention as a non-
professional APC in complex relationships with other 
types of cells of liver sinusoid capillary is still debated. 
Experimentally, numerous receptors have been identified 
on the plasma membrane of HSCs (members of the HLA 
class II, Fc (fragment crystallizable) of IgG, cathepsin S, 
and lipid-presenting molecules) – a feature which supports 
this theory [65–67]. As APCs, HSCs may induce the 
efficient stimulation of lymphocytes or apoptosis of virus-
infected cells [48]. However, HSCs intervention as APCs 
is controversial. There are data to support that HSCs are 
not able to act alone as APCs but that they require the 
intervention of retinoic acid or of TGF-β1, molecules 
which could stimulate T-lymphocytes activation and 
may induce differentiation of Foxp3+ subpopulation 
[77–79]. 
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Hepatic stellate cells and hepatocellular 
carcinoma 

Considering that HSCs promote and support secretion 
of cytokines which controls liver proliferation and rege-
neration, in specific clinical situations, their aberrant 
activation may result in severe diseases, such as hepato-
cellular carcinoma [10]. 

Frequently, hepatocellular carcinoma is developed 
on a preexistent liver pathology, as liver cirrhosis – the 
characteristic fibrosis present in the liver parenchyma 
being performed by HSCs [80]. Thus, more and more 
studies raise the question of the connection between the 
activity of HSCs and the occurrence of malignant tumors, 
as they intervene in liver carcinogenesis by autocrine 
secretion of numerous cytokines, such as TGF-β, PDGF, 
FGF 1 and 2 (fibroblast growth factors 1 and 2), IGF 
(insulin-like growth factors), and HGF [30, 53, 81–83]. 
This assessment is sustained by immunohistochemical 
studies results that revealed a high number of HSCs in 
tumoral sinusoids, capsule, and fibrous septae [84, 85]. 

In liver carcinogenesis initiation, these cells intervene 
not only by modulation of stromal growth, but also by 
inhibition of the local immune response or by stimulation 
of neoangiogenesis, features demonstrated in patients with 
chronic viral hepatitis [86–88]. All these findings lead 
to the conclusion that HSCs are “accomplices” which 
create this microenvironment required for tumor masses 
development, including secondary or metastatic types [89]. 

In achieving the goal of early detection of malignant 
transformation in chronic lesions associated to cirrhosis 
or viral hepatitis, a decisive role might be played by the 
activated HSCs. Thus, secretory products of these cells, 
as HGF, IGF, TGF-β1, or osteopontin, whose level of 
secretion are much more amplified in patients with 
hepatocellular carcinoma, might be considered as novel 
diagnostic biomarkers with potential future applicability 
in current medical practice [90–92]. 

 Recent technical advances in HSCs 
research 

Taking into account the technical requisites, HSCs 
isolation is a very difficult process. Historically, the first 
procedures were accomplished in rats [93, 94], but mouse 
models, including genetic ones, have been lately developed 
[5]. Nevertheless, the “gold standard” method applies the 
principle of density centrifugation using Iohexol, resulting 
in HSCs separation based on their physical characteris-
tics in comparison to other cells of liver parenchyma. 
Following this method, viable HSCs, which are appropriate 
for cell culture research, are obtained [95]. More recently, 
other methods have become available for HSCs identi-
fication, such as: flow cytometry, quantitative real-time 
PCR, confocal microscopy, and molecular markers of 
cellular origin and of specific phenotype [5]. 

The FACS (fluorescence-activated cell sorting) pro-
cedure applied to obtain HSCs has been reported by several 
groups of researchers [41, 95–99]. Unfortunately, due to 
large variations of the protocols, a complete analysis of 
the isolated cells functional properties has not been yet 
achieved. 

HSCs are major targets in anti-fibrotic therapies. Most 

research in this direction has been mainly done using 
experimental models [100] designed to exploit the fibrosis 
mechanisms which involve HSCs. Consequently, different 
receptors for molecular therapies have been identified, 
such as: M6P/IGF-IIR (mannose-6-phosphate/insulin-
like growth factor II receptor), PDGFR (platelet-derived 
growth factor receptor), RBPR (retinol binding protein 
receptor), α2-macroglobulin, ferritin, uroplasminogen, 
thrombin, matrix compounds (integrin, collagen type VI, 
and fibronectin) receptors [101, 102]. 

One of the most studied receptors is M6P/IGF-IIR,  
a regulatory transmembrane glycoprotein, acting as a 
clearance receptor able to provide protein degradation 
by endocytosis, or able to act as a signaling receptor 
involved in transduction of G-protein-linked signal [103, 
104]. M6P/IGF-IIR has affinity for different ligand 
molecules, classified according to their binding modality 
in two categories: M6P-containing ligands (renin, latent 
TGF-β1, thyroglobulin, proliferin, leukemia inhibitory 
factor, and granzyme B) and M6P-free ligands (IGF-II, 
retinoic acid, urokinase-type plasminogen activator receptor, 
and plasminogen) [104]. Furthermore, M6P binding to 
activated HSCs requires a carrier and the necessary 
abilities to perform this task are expressed by HSA (human 
serum albumin), as has been demonstrated by appropriate 
tests [105, 106]. 

M6P-HSA complex binding to HSCs results, by M6P 
internalization [106], in activation reduction – thus, 
representing the first proof of HSCs targeted therapy 
benefits [101]. A different mechanism used to obtain a 
selective carrier is based on albumin transformation by 
means of cyclic peptide moieties, which provide the binding 
to other molecules (i.e., cytokines or growth factors) and 
these, in turn, adhere to HSCs. Thus, the precise orientation 
of some anti-fibrotic substances towards HSCs has been 
achieved, in vitro (e.g., doxorubicin [107], pentoxifylline 
[108, 109] 18β-glycyrrhetinic acid (18β-GA) [110], myco-
phenolic acid [106]), directly resulting in a reduction of 
the fibrosis process [102, 111]. 

Another target molecule is PDGFRβ, which is over-
expressed in PDGF-stimulated HSCs, with powerful 
mitogenic effect directly correlated with fibrosis [112]. 
An additional design tentative of a targeted drug delivery 
system dedicated to IFN-γ selective supply to HSCs has 
been using sterically stable liposomes adapted by specific 
cyclic peptides assuring PDGFRβ binding [113–115]. 
This type of experiment is justified by the necessity to 
optimize the anti-fibrotic action of IFN-γ administered 
to human subjects [115]. 

A recent stage in specifically oriented cirrhosis therapy 
toward HSCs is represented by genetic approach. Antigenic 
therapy is aimed to provide HSCs genes and antisense 
material, via adenoviral or lipid based non-viral vectors 
[101]. The studies on this subject, using mainly adenoviral 
mediated transduction methods, are yet limited. 

Although HSCs have a unique gene signature, this 
suffers major transformations during the transdifferenti-
ation process into myofibroblasts [116–119]. However, 
HSCs isolation by FACS secures the preservation of the 
characteristic gene reservoir [99], including the major 
fibrogenic genes Collal and Acta2 [95]. 

The cluster of transdifferentiation-sensitive genes has 
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been continuously extending. This comprises transcription 
factors, extracellular matrix proteins, cellular adhesion 
molecules, cytokine receptors, and genes codifying proteins 
responsible for matrix transformation or cytoskeletal 
arrangement [102]. Some of them are considered as putative 
targets for genic therapies application [102, 104], with 
several experimental reports on CSRP2 and SM22α genes 
[120], GFAP gene [121–123], vimentin gene [61], α-SMA 
and Collal gene [124]. 

Targeted genic therapy may be also oriented toward 
several receptors, such as p75 neurotrophin [125], which 
bind to NGF (nerve growth factor) and results in activated 
HSCs apoptosis [125, 126]. Consequently, in case of a 
direct stimulation of p75NTR (p75 neurotrophin receptor), 
HSCs destruction could be achieved [125, 126]. 

Although the benefits of genic therapy are undoubtable, 
the pathway from experimental data to clinical application 
is far from being accomplished. The difficulties mainly 
derive from the inconsistence of the reported results,  
in vitro observations sometimes lacking in vivo corres-
pondence – a feature understandable in relation to the 
complexity of regulation process responsible for HSCs 
genetic specificity [120]. 

 Final remarks 

Despite the amount of knowledge accumulating on 
HSCs, they still remain an enigma. Its pluripotential 
capacity and its major contribution in liver development 
and regeneration could represent challenging research 
targets in developing novel therapies. Moreover, extremely 
interesting data on HSCs involvement in regulation  
of immunotolerance in liver microenvironment – with 
significance for viral pathology – have been registered, 
suggesting subtle relationships between their activity and 
some other types of inflammatory cells. Last but not least, 
the use of HSCs for in vitro differentiation of hepatocytes 
followed by transplant in human liver could provide the 
base for new therapeutic approaches in liver diseases. 
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