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Abstract 
Although neuropathological conditions differ in the etiology of the inflammatory response, cellular and molecular mechanisms of neuro-
inflammation are probably similar in aging, hypertension, depression and cognitive impairment. Moreover, a number of common risk factors 
such as obesity, hypertension, diabetes and atherosclerosis are increasingly understood to act as “silent contributors” to neuroinflammation 
and can underlie the development of disorders such as cerebral small vessel disease (cSVD) and subsequent dementia. On the other hand, 
acute neuroinflammation, such as in response to traumatic or cerebral ischemia, aggravates the acute damage and can lead to a number 
of pathological such as depression, post-stroke dementia and potentially neurodegeneration. All of those sequelae impair recovery and most 
of them provide the ground for further cerebrovascular events and a vicious cycle develops. Therefore, understanding the mechanisms 
associated with vascular dementia, stroke and related complications is of paramount importance in improving current preventive and 
therapeutic interventions. Likewise, understanding of molecular factors and pathways associated with neuroinflammation will eventually 
enable the discovery and implementation of new diagnostic and therapeutic strategies indicated in a wide range of neurological conditions. 
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 Introduction 

Worldwide, more than 15 million people have a stroke 
each year. Therefore, stroke remains one of the main 
causes of death and adult disability. Population aging 
will result in a dramatic increase in the burden of stroke. 
Therefore, it is not surprising that pharmaceutical industry 
has invested a huge amount of money in the development 
of pharmacotherapies of acute ischemic stroke. Promising 
experimental data, however, have almost consistently 
failed to produce a clinically effective neuroprotective 
drug [1–5]. Only the intravenous recombinant tissue 
plasminogen activator (tPA) has been approved for the 
treatment of acute ischemic stroke. 

Co-morbidities are the major determinant in the 
treatment of ischemic stroke. Modifiable risk factors some 
of which are more common in women results from 
lifestyle can be modified with healthcare and medical 
interventions [6]. Unmodifiable risk factors serve also 
as markers for high stroke risk. Interestingly, the recent 
evidence shows that cognitive decline below dementia 
threshold [7] or depression [8] is associated with incidence 
of stroke. 

The failure to consider the complexity and heterogeneity 
of human diseases and co-morbidities may contribute to 
fact that neuroprotective drugs does not work in clinical 
practice but do so in experimental models of stroke. 
Several committees (STEPS, 2009) have proposed a design 
framework aimed to improve the quality of preclinical 
stroke studies by including animals with co-morbidities. 

It is highly recommended that prior clinic, positive results 
obtained in experimental studies in young animals should 
be confirmed in additional studies done in aged animals 
and young animals models with comorbidities such as 
neuroinflammation, metabolic inflammation, hypertension, 
and hypercholesterolemia [9]. 

 Aging, atherosclerosis, chronic 
inflammation and perfusion deficits 

Atherosclerosis, a major risk factor for stroke and 
central nervous system (CNS) tissue destruction, is a 
disease of arteries characterized by vascular inflammation 
caused primarily by infiltrated monocytes into the injured 
vascular wall. 

Several studies have suggested that inflammation 
may be important for accelerated progression of athero-
sclerosis. In a study investigating the association between 
inflammatory biomarkers and progression of intracranial 
large artery stenosis after ischemic stroke it found that  
in addition to traditional risk factors, circulating levels 
of interleukin (IL)-6 after stroke are associated with 
future intracranial large artery stenosis progression [10, 
11]. Currently, it is widely accepted that in addition to 
other established cardiovascular risk factors, markers of 
inflammation such as C-reactive protein (CRP) is a strong 
predictor of subclinical and clinical atherosclerosis [12, 13] 
and progression of hemorrhagic stroke [14–16]. Thus, in 
patients with hypertension, elevated CRP levels predicted 
clinical events. These patients also showed a significant 
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relationship between clinical events and quintiles of CRP 
levels [12, 17, 18]. 

Other studies have reported on pathological vicious 
cycles related to CRP and atherosclerosis. For example, 
elevated circulating levels of CRP independently predict 
the development of new plaques in older persons with 
carotid arteries free from atherosclerotic lesions [19, 20]. 

However, CRP represents the strongest evidence that 
(neuro)inflammation is of paramount importance in a 
neurological syndrome such as stroke. 

Virtually, all drug interventions that have been 
successful pre-clinically in experimental stroke have failed 
to demonstrate positive results in stroke patients. Our 
research as well as group’s studies indicate that ignoring 
the molecular characteristics of ageing and the associated 
co-factors present in clinical stroke results in disappointing 
results in clinical trials [3, 21–23]. 

Studies conducted on aged rats have demonstrated that 
neurological impairment is more severe and functional 
recovery less successful than in young rats [24–26]. In 
addition, elderly individuals recover less well from stroke 
than young individuals [27, 28]. 

 Stroke, obesity and neuroinflammation 

Age represents the most important risk factor for 
stroke. Virtually, all drug interventions that have been 
successful pre-clinically in experimental stroke have failed 
to demonstrate positive results in stroke patients. 

Our research as well as studies done in other laboratories 
indicate that ignoring ageing and the associated co-
morbidities may lead to failure in clinical trials [3, 21–
23]. 

Epidemiological studies have revealed an age-dependent 
increase of stroke susceptibility in men and women, with 
half of all strokes occurring in people over 75 years, and 
one third of cases in people over 85 years [29, 30]. 
Studies conducted on aged rats have demonstrated that 
neurological impairment is more severe and functional 
recovery delayed and often less successful than in young 
rats [24–26]. In addition, elderly individuals recover less 
well from stroke than young individuals [27, 28]. 

Stroke patients are at highest risk of death in the first 
weeks after the event, and between 20% to 50% die 
within the first month depending on type, severity, age, 
comorbidity and effectiveness of treatment of associated 
complications. Considerable spontaneous recovery occurs 
up to about six months. Few of the patients who survive 
may be left with no disability or with mild, moderate or 
severe disability [31, 32]. However, patients with a history 
of stroke are at high risk of a subsequent event, about 
10% in the first year and 5% per year thereafter [33]. 

The obesity paradox has been reported in many articles 
as an inverse relationship between the body mass index 
(BMI) and mortality in stroke patients. However, the 
relationship between BMI and functional recovery in post-
stroke patients has not been well described [34–39]. 

A cohort study from the China National Stroke Registry 
analyzed the relationship between the BMI, mortality 
and post-stroke functional recovery at three months 
after the event. This study enrolled and analyzed 10 905 
eligible patients with acute ischemic stroke. Favorable 
behavioral recovery was seen in 52.4% of underweight 

(BMI 18.5 kg/m2), 55% of normal weight (BMI 18.5–
22.9 kg/m2), 61% of overweight (BMI 23–27.4 kg/m2), 
59.2% of obese (27.5–32.4 kg/m2) and 60.3% of severe 
obese (BMI >32.5 kg/m2) stroke survivors. The overweight 
acute ischemic stroke survivors had a better three-month 
functional recovery. Remarkably, patients with obesity 
(BMI <32.5 kg/m2) showed a positive outcome. However, 
severe obesity was associated with higher mortality while 
an overweight status was not a protective factor of survival 
at three months after stroke [40, 41]. 

Another study evaluating the effect of BMI on stroke 
rehabilitation conducted in 819 patients revealed that 
overweighed patients had better functional progression 
than non-obese patients [4, 42]. 

Likewise, a large retrospective cohort study from the 
Danish Stroke Register enrolling 53 812 patients has 
assessed the obesity paradox by analyzing the BMI, age, 
gender, civil status, stroke severity, stroke subtype, a pre-
defined cardiovascular profile, and the socio-economic 
status. There was no evidence of an obesity paradox in 
patients with reported stroke. However, stroke occurred 
at a significantly younger age in patients with higher 
BMI [42]. 

Adipose tissue dysfunction in obesity contributes to 
chronic, low-grade inflammation that predisposes to type 2 
diabetes mellitus (T2DM) and cardiovascular disease (CVD) 
[43]. In obese mice, the adipose tissue is characterized by 
a lower interstitial oxygen partial pressure (PO2) [44, 45]. 
Quite interestingly, obese patients have a lower PO2 in 
the subcutaneous adipose tissue of the lateral upper arm 
compared with non-obese patients [46]. Furthermore, 
abdominal subcutaneous adipose tissue PO2 is slightly lower 
in overweight/obese compared with lean subjects [47]. 

In conclusion, obesity could determine a worse outcome 
in stroke patients, yet it is not known the exact molecular 
pathways [4, 41, 48]. However, since obesity represents a 
state of chronic inflammation it is likely that this factor 
plays a crucial role in the general evolution of post-stroke 
patients. 

 Diabetes mellitus and metabolic 
inflammation 

Diabetes mellitus (DM) is a great challenge for the 
healthcare system accounting for ~6% of global mortality in 
industrialized countries. Half of DM-associated deaths are 
attributed to cardiovascular (macro- and micro-vascular) 
complications. 

Neuropathic complications are also frequent, occurring 
in about 60% of people with DM, and often overlap with, 
and worsen the consequences of vascular disease. Sensory 
neuropathy is a typical form of peripheral neuropathy 
characterized by an altered perception of noxious stimuli 
or ischemic pain. This promotes the foot ulcers caused 
by pressure or traumas and abrogates warning symptoms 
during a heart attack. 

It is becoming well established that lifestyle, especially 
dietary habits, greatly affect metabolic health. Bad nutri-
tional habits can lead to metabolic disorders, triggered by 
a system-wide chronic inflammation, also called meta-
flammation, metabolic inflammation [49, 50]. A meta-
flammation state can lead to a series of disorders and 
diseases, including hypertension, metabolic syndrome, 
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CVD, stroke, insulin resistance and T2DM. It is postulated 
that lipid hormones including sphingolipids and eicosanoids 
in concert with cytokines and adipokines play an important 
role in this process by inducing adverse regulatory responses 
in target cells such as macrophages. The role of genetics 
in driving metabolic disease development is strongly 
indicated by the higher concordance rate of T2DM in 
monozygotic than in dizygotic twins. It has been estimated 
that 30% to 70% of T2DM risk can be attributed to genetics 
[51, 52]. The investigation of gene–environment interactions 
through large collaborative efforts holds promise in 
furthering our understanding of the interplay between 
genetic and environmental factors [52, 53]. 

Since the availability of whole human genome single 
nucleotide polymorphisms (SNP) assays, genome-wide 
analysis of correlations between genetic variants (SNPs) 
and phenotypes has become an important approach to find 
disease-causative genes. Genome wide SNP typing is often 
performed in very large groups of human individuals 
(cohorts), and a large number of loci underlying disease 
have now been catalogued (http://www.genome.gov/gwa 
studies/), including variants that increase susceptibility to 
T2DM. However, these loci confer effects of only modest 
size and do not add to the clinical prediction of diabetes 
beyond that of traditional risk factors, such as obesity, 
physical inactivity, family history of diabetes, and certain 
clinical parameter. Furthermore, recent studies led to the 
identification of new genetic loci linking adipocyte and 
insulin biology to body fat distribution [53, 54]. The 
combination of genome-wide association study (GWAS) 
with metabolomics is breaking new grounds, as it allows 
making associations between SNPs and so-called inter-
mediate phenotypes [55–57]. 

Metabolomics facilitates the exact quantitative 
measurement of large sets of lipid molecules and other 
metabolites, and GWAS has allowed the mapping of 
numerous metabolic phenotypes on the genome, as 
demonstrated by the discovery of substantial numbers of 
loci with relative strong effects [58–63]. Therefore, we 
could speculate diabetes mellitus is characterized by a state 
of increased general inflammation including at the CNS 
level, which might impair recovery and outcome in a 
wide range of neurological conditions. 

 Aging and neuroinflammation 

Normal aging is characterized by a chronic low-grade, 
proinflammatory state [64, 65], with an overexpression of 
systemic inflammatory factors, including proinflammatory 
cytokines [66–68]. Age-associated inflammation in the 
brain manifests primarily by the chronic activation of 
perivascular and parenchymal macrophages/microglia 
expressing proinflammatory cytokines and an increased 
number of astrocytes [45, 69]. Given the potential role 
of inflammation in psychopathology, it is possible that 
chronically activated inflammatory signals in aging may 
contribute to increased vulnerability to neuropsychiatric 
disorders [3, 70, 71]. Inflammation in obese women is 
associated with increased concentrations of inflammatory 
markers (IL-6, CRP and adipokines) that correlated with 
increased symptoms of depression and anxiety [72, 73]. 
Conversely, removal of fat tissue surgically was associated 
with reduced inflammation [74, 75]. 

The prevalence of depression and cognitive dysfunction 
is particularly elevated in the elderly and obese subjects. 
Patients with major depression have an increased onset 
risk of aging-related diseases affecting the cardiovascular, 
cerebrovascular, neuroendocrine, metabolic, and immune 
systems [76–80]. Depression can thus significantly com-
promise successful aging defined subjectively as freedom 
from chronic disease and disability, along with high physical 
and cognitive functioning and social engagement [81, 82]. 

 Perfusion deficits in the elderly, 
inflammation and depression 

Recent data suggest that perfusion deficits in the elderly 
can trigger microglial activation and subsequent neuro-
inflammation [83, 84] ultimately resulting in demyelination 
and neurodegeneration [22, 84]. 

Previous studies in rodents indicate that aging and 
neurodegenerative diseases promote a proinflammatory 
states in older individuals and leads to the development 
of an activated population of microglia [85–93]. Further, 
immune activation can be a characteristic of depression 
[94–96] and precipitate depressive symptoms [3, 96]. 
This was particularly evident in middle-aged rodents as 
compared to the young counterparts [97]. 

In the elderly, perfusion deficits can trigger microglial 
activation and shifts the CNS into a proinflammatory state 
[82–84, 90]. Recent research suggests that the inflammatory 
process is potentially intricately linked with multiple 
neurodegenerative pathways and depression and plays a 
central role in the pathophysiology of both depression and 
dementia [95, 98–104]. There is strong evidence that in 
human vascular disease, vascular β-amyloid (Aβ) deposition 
in the brain promotes development of depression and 
increases the risk of dementia by causing rigidity of 
arterioles and leading to infarction in the territory of their 
branching vessels in the temporal cortex of patients with 
cerebral amyloid angiopathy (CAA). This is associated 
with marked vascular and perivascular infiltration of 
inflammatory cells, a condition mimicked in mice subjected 
to chronic cerebral hypoperfusion [105–107]. 

 Aging, neuroinflammation and 
depression 

Major depressive disorder (MDD) is a severe psychiatric 
illness that is associated with significant morbidity and 
mortality. In addition to mortality associated with suicide 
[108, 109], depressed patients are more likely to develop 
dementia, coronary artery disease and type 2 diabetes [110, 
111]. Depression also complicates the prognosis of other 
chronic diseases [111–113]. However, biological mechanisms 
underlying depression remains poorly understood. 

Despite advances in the treatment of major depression, 
one-third of depressed patients fail to respond to conven-
tional antidepressant medication [114, 115]. One patho-
physiological mechanism hypothesized to contribute  
to treatment resistance in depression is inflammation. 
Depression and dementia by a number of putative 
mechanisms involving neuroinflammation, oxidative stress, 
endothelial nitric oxide synthase uncoupling, and hyper-
glutamatergia, as well as neurovascular dysfunction in 
MDD [116, 117]. 
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Recent evidence has shown that resistance to convent-
ional antidepressants in major depression is associated 
with increased levels of inflammatory markers in the 
periphery including inflammatory cytokines, acute phase 
proteins, chemokines, and adhesion molecules [118–121]. 
Indeed, patients treated with cytokines for various illnesses 
are at increased risk of developing major depressive illness 
[122]. A recent study reported that treatment-resistant 
depression (TRD) who has highly increased inflammation 
[i.e., elevated baseline high-sensitivity (hs)-CRP concent-
ration] responded preferentially to Infliximab while par-
ticipants with a low level of inflammation treated with 
Infliximab appeared to do worse than placebo-treated 
participants [123]. Of note, increased inflammatory markers 
in depressed patients have also been associated with remitted 
stages of depression in response to treatment with convent-
ional antidepressant medications [120, 121, 124–126]. On 
a background of systemic inflammation, proinflammatory 
cytokines can access the CNS and interfere with serotonin 
metabolism, and reduce both synaptic plasticity and hippo-
campal neurogenesis [94, 127]. Behavioral consequences 
of these effects of the immune system on the brain include 
depression [94, 127–129]. 

Cross-sectional [130–132] and prospective [133, 134] 
epidemiological studies have focused on peripheral inflam-
matory markers, such as cytokines and acute phase proteins 
have investigated the hypothesis that peripheral inflam-
matory markers are etiological factors in the development 
of depressive symptoms [95, 126, 135]. The most consistent 
finding has been the association of elevated cytokines 
IL-6 and IL-8 with depressive symptoms [126, 129]. 

Successful antidepressant treatment may reduce the 
level of proinflammatory markers by improving brain 
perfusion and by restoring the endothelial function [118, 
129, 136, 137]. This, Etanercept, a soluble tumor necrosis 
factor-α receptor, and Celecoxib, a cyclooxygenase-2 
inhibitor, and Infliximab, reduced depressive symptoms 
in patients with inflammatory diseases [123, 138–141]. 

 Post-stroke depression and 
neuroinflammation 

Recent evidence suggests that stroke and traumatic 
brain injury confer vulnerability to a late-onset of neuro-
psychiatric and neurocognitive symptoms [142, 143]. 

The brain responds to injuries by activation of an 
immunoreactive microglial population. The resulting 
neuroinflammation may be a possible triggering mechanism 
for the development of depressive-like behavior after injury 
that may last for weeks and months after the event [143]. 
Importantly, a recent meta-analysis found that the frequency 
of depressive symptoms even tends to increase in the long-
term phase of recovery [144, 145]. Depression persists 
after 20 months in 34% of elderly patients with acute 
stroke and has been linked to a decline in cognition and 
unfavorable physical outcome. 

Despite the fact that a high proportion of stroke patients 
develop mood disorders, the mechanisms underlying post-
stroke depression (PSD) have so far received little attention. 
One major factor involved in the development of post-
stroke depression could be represented by an age-related 
microglia activation in response to stroke. Persistent 
neuronal death causes a prolonged neuroinflammatory 

response in the infarcted area that may contribute 
substantially to post-stroke depression [3]. After stroke and 
traumatic brain injury, microglia move toward the site of 
damage and engulf and clear damaged cellular debris [146–
149]. We have shown that aged rats showed a fulminant 
microglia reaction during the acute phase of stroke that 
persists for weeks thereafter [23, 143, 150, 151]. Since 
microglia has been involved in removing degenerating 
synapses, these findings suggest that neuroinflammation 
represents a significant etiopathogenic pathway. 

 Aging, neuroinflammation and small 
vessel disease 

In older individuals, inflammatory mechanisms have 
been linked to the pathogenesis of dementia and recent 
evidence suggests that systemic and local neuroinflam-
mation significantly contributes to cSVD-vascular dementia. 
For example, the adhesion molecules are increased in serum 
of patients who have white matter lesions [152, 153]. Since 
chronic inflammation plays an important role in hyper-
tension, a relationship between inflammatory processes and 
cSVD may also be assumed [154]. One hypothesis is that 
these microvascular changes result in a state of chronic hypo-
perfusion leading gradually to oligodendrocyte death and 
degeneration of myelinated fibers. This may not only cause 
progressive white matter damage on a macroscopic scale, 
but also foster inflammatory processes chronically. Further, 
increased low-grade inflammation amplifies the risk of 
stroke [20] (Figure 1). However, the available data are still 
controversial. Thus, in a cross-sectional study investigating 
the possible link between biomarkers of systemic inflam-
mation and functional status in older patients with late onset 
Alzheimer’s disease and elderly patients with vascular 
dementia, it was found that IL-6 plasma levels negatively 
correlated with vascular dementia [2–4, 155–157]. 

 Conclusions 

Although neuropathological conditions differ in the 
etiology of the inflammatory response, cellular and molecular 
mechanisms of neuroinflammation are probably similar in 
aging, hypertension, depression and cognitive impairment. 
Moreover, a number of common risk factors such as obesity, 
hypertension, diabetes and atherosclerosis are increasingly 
understood to act as “silent contributors” to neuroinflam-
mation and can underlie the development of disorders such 
as cerebral small vessel disease and subsequent dementia. 
On the other hand, acute neuroinflammation such as in 
response to traumatic or cerebral ischemia aggravates the 
acute damage and can lead to a number of pathological 
such as depression, post-stroke dementia and potentially 
neurodegeneration. All of those sequelae impair recovery 
and most of them provide the ground for further cerebro-
vascular events, and a vicious cycle develops. Therefore, 
understanding the mechanisms associated with vascular 
dementia, stroke and related complications is of paramount 
importance in improving current preventive and therapeutic 
interventions. Likewise, understanding of molecular factors 
and pathways associated with neuroinflammation will 
eventually enable the discovery and implementation of new 
diagnostic and therapeutic strategies indicated in a wide 
range of neurological conditions. 
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Figure 1 – The vicious cycle underlying cerebrovascular events and their consequences. Cellular and molecular 
mechanisms of neuroinflammation are probably similar in aging, hypertension, depression and cognitive impairment. 
Moreover, a number of common risk factors such as obesity, hypertension, diabetes and atherosclerosis are increasingly 
understood to act as “silent contributors” to neuroinflammation and can underlie the development of disorders such 
as cerebral small vessel disease (cSVD) and subsequent dementia. Acute neuroinflammation aggravates the damage 
after traumatic or stroke and can lead to a number of pathological such as depression, post-stroke dementia and 
potentially neurodegeneration. TBI: Traumatic brain injury. 
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